

抵抗変化型不揮発デバイスで 低電圧限界に挑む

– 低炭素社会を実現する超低電圧デバイスプロジェクトー

 住広直孝 超低電圧デバイス技術研究組合
 Low-power Electronics Association & Project
 sumihiro@leap.or.jp

- ●プロジェクトの社会的背景
- ●LSI低電力化のシナリオ
- ●BEOLデバイス 原子移動型スイッチ
 - 磁性変化デバイス
 - 相変化デバイス
- ●集積化基盤技術 ナノトランジスタ構造デバイス
 - 三次元ナノカーボン配線技術
- ●超低電圧デバイスが実現する未来像
- ●まとめ

Work in Progress - Do not publish

プロジェクトの社会的背景

グリーンITイニシアティブの推進 平成20 年10 月 経済産業省商務情報政策局 高濱航氏 発表資料より http://www.csaj.jp/seminar/2008/1006_seminar.html

2009年度グリーンIT推進協議会調査分析委員会報告書より抜粋

インターネットのトラフィック量は、2025年に2006年比で190倍に増大し、IT機器(データセンタ、ルータ・ス イッチ、PC)、エレクトロニクス機器(TV)の消費電力は、2005年と比較して、2025年に3.6倍になると予測 される。

Work in Progress - Do not publish

プロセッサの消費電力予測

Work in Progress - Do not publish

STRJ WS: March8, 2013, 特別講演

3

LSI低電力化のシナリオ

LSIにおける電力消費(理想形) $P = n * (CV^2 f + I_L V)$ 動作時電力 待機時リーク電力 省電力化シナリオ n, デバイスの数, C, 負荷となる容量 V, 電源電圧 f, 動作周波数 $I_L, 総リーク電流$

(1) 動作時電力の削減 \Rightarrow V, f, C, Rの低減(微細化、配線低抵抗化、Low-k膜)

(2) 待機時リーク電力削減 \Rightarrow I_L, V の低減(微細化、Vth設定)、不揮発動作

(3) 全消費電力の削減 ⇒ *n* の低減(非動作部電源遮断、不揮発動作)

デバイスの観点からは、Vの低減が最も効果的

Work in Progress - Do not publish

低電圧化を阻む課題

従来のバルクCMOSでは、不純物の数と位置のゆらぎのため、 主にローカルV_{th}*ばらつきが増大し続け、低電圧動作が困難に

V_{th}*;トランジスタを動作させるのに必要な最小電圧

Work in Progress - Do not publish

電荷蓄積型から抵抗変化型へ

6

配線工程(BEOL)に埋込む抵抗変化型デバイス

Work in Progress - Do not publish

LSI低電力化に向けたデバイス・集積化技術

- 電荷蓄積ではない、抵抗変化型不揮発デバイス・スイッチ (BEOLデバイス)
- 超低抵抗配線が期待される三次元ナノカーボン配線、
- 本質的にばらつきの少ないナノトランジスタ構造デバイス

(集積化基盤技術)

Work in Progress - Do not publish

超低電圧デバイスが実現するもの

情報処理装置の階層構造

Work in Progress - Do not publish

原子移動型スイッチとは

■ Cuイオンのイオン伝導・電気化学反応を利用した抵抗変化スイッチ

- 特徴
 - 高On/Off抵抗比(>10⁶)
 - 不揮発性
 - 書換可能(>10³)
 - 小面積

Work in Progress - Do not publish

Work in Progress - Do not publish

■再構成可能LSIの性能を決めているSRAMスイッチを原子移動型スイッチで置き換え

Work in Progress - Do not publish

65nm-CMOSの7M-BEOL(Cu配線)に原子移動型スイッチを集積

Work in Progress - Do not publish

磁性変化デバイス(STT-MRAM)とは

Work in Progress - Do not publish

MRAMでSRAMを置き換えると何が変わるか

SRAM性能の実現に加えて、消費電力とチップ面積を 増やさずに、混載するメモリ容量の増加(約6倍)が可能

		混載SRAM(現状)	MRAM
MRAMでSRAMと 同等の特性を実現	読み出し時間 (ns)	1-5	1–5
	書き換え時間 (ns)	1-5	1–5
	書き換え耐性 (回)	無限回	無限回
MRAMで低電力、 キャッシュ容量増大 の特性が付加	リーク電流	常時リーク	常時リーク無し
	動作電圧 (V)	~0.8 (6T-SRAM)	< 0.5
	セル面積 (F ²)	~150	~25
	セル面積 (um2) @ 20nm世代	0.06	0.01
	1Mbマクロ面積比 (セル効率60%)	1	0.17
	マクロ容量比	1	5.9

Work in Progress - Do not publish

MRAMでSRAMを置き換えると何が変わるか

MRAMを大容量化しても、リーク電流の増大は無い

Work in Progress - Do not publish

無限回書き換え

トンネル絶縁膜の高品質化を実現し、加速試験で初めて10¹⁶回 (キャシュメモリとしての必要条件)の書き換え耐性を実証

Work in Progress - Do not publish

超格子相変化デバイスとは

原子状態の違いを利用する抵抗変化型の不揮発性メモリ

◆ ジュール発熱により超格子相変化材料の抵抗を変化させて情報を記憶
 ◆ 書き換えのために流す電流が一方向のユニポーラ動作

要求項目	開発項目と効果			
	① 超格子	② 熱拡散防止層	③ クロスポイントセル	
転送速度	結晶⇔結晶の相変化	相変化材料への熱閉じ込	ニングノマクセフ	
電力	(Geの短範囲移動)	め	リンダムアクセス	
コスト	相変化領域のダウンサイジング(微細化に対応)		4F² 物理的最少サイズ	

Work in Progress - Do not publish

超格子相変化デバイスの特長

- ・相変化デバイスはバイポーラ型MRAM, RRAMよりセルサイズが小さい
- ・超格子相変化膜で書換エネルギーを低減し、ストレージに用途拡大

「不揮発メモリの比較(理論値)

	相変化	MRAM	RRAM		
メモリセル	1771線 抵抗可変 対対 5 イオード 17 イオード 17 イオード		・小線 版加可変 サ料 ・ダイオー ワート線		
動作	ユニポーラ	バイホ ゚ーラ	ユニホ゜ーラ	ヾ゙イポーラ	
セルサイス゛	4F ²	6F ²	4F ²	6F ²	
エネルキ゛ー	0.25pJ	0.4pJ	0.5pJ	0.5pJ	
書換回 数	> 10 ⁶	10 ¹⁶	<< 10 ⁶	> 10 ⁶	

<u>相変化デバイスの比較</u>

	LEAP	A社	B	社	C社	D社
材料	超格子	Ge ₂ Sb ₂ Te ₅				
ステータス	目標	製品	製品	ISSCC 2012	IEDM 2011	IEDM 2011
用途	ストレージ	モバイル	モバイル	モバイル	混載	DRAM
セルサイス゛	4F ²	8F ²	5F ²	4F ²	> 8F ²	4F ²
エネルキー	3.5pJ	>100pJ	>100pJ	~35pJ	<100pJ	∼50pJ

Work in Progress - Do not publish

超格子相変化デバイスで何が変わるのか

NANDフラッシュ

並列動作で現世代SSD仕様を達成、次世代SSD仕様の達成は不可 能

超格子相変化デバイス

高速・低電力等の特性が新たに付加され、データ転送速度が向上 動作チップ数の削減による低電力化で、次世代SSDの仕様を達成

Work in Progress - Do not publish

超格子相変化膜の動作特性

◆ GeTe/Sb₂Te₃超格子相変化膜の低電圧、低電流動作 セット電圧1V(従来1.3V),リセット電圧1V(従来1.5V) セット電流60uA,従来比1/30(世界最高水準),リセット電流1mA,従来比1/2

メモリセル

Work in Progress - Do not publish

STRJ WS: March8, 2013, 特別講演 21

Current(mA)

(1) チャネル不純物を含まず(ドーパントレス)、ローカルばらつき低減が可能→低電圧
 (2) 基板バイアス制御が可能な、プレーナ型 DG(ダブルゲート)構造→ばらつき補正等
 (3) SOTB/バルクのハイブリッド構造→既存IPとの共存、設計移行容易性

Work in Progress - Do not publish

何故、超低電圧か?

集積回路を構成するトランジスタ全てが、常にエネルギー効率最大 (動作あたりの消費電力最小)の状態で動作することが理想。

Si-CMOSでは電源電圧 V_{dd} =0.4V付近で効率最大になるが、この状態で処理速度要求を満たせる用途は限られる。

Work in Progress - Do not publish

LEAPのねらい:低ばらつきと適応制御

100万個トランジスタの*V_{th}*ばらつき幅は ~0.5V (MIRAIプロジェクトによる) 構造を変え、ばらつきを低減させる。

Work in Progress - Do not publish

STRJ WS: March8, 2013, 特別講演 24

V_{th}を制御しながら、性能・電力最適化

超低電圧でも実用性ある速度で動作。

動作を行う

特性ばらつきの低減

チャネル不純物による影響の少ない(ドーパントレス)SOTB構造により、 しきい値電圧Vthのばらつきのみでなく、出力電流のばらつきも大幅低減。

Work in Progress - Do not publish

SRAMアレー(Mbit)のSEM像

三次元ナノカーボン配線

ナノカーボン配線によって何が変わるか

多層グラフェン横方向配線 · CNT超高アスペクトビSTRD ア

AR16ビア(高さ1.6µm、径0.1µm)底か ら CNT選択成長を確認

FIB加工観察

Yamazaki et. al., APEX 025101(2012) Work in Progress - Do not publish

低電力の新しい領域への挑戦

Work in Progress - Do not publish

超低電圧デバイスが実現する未来像

電池レス モバイルコミュニケーションが作る、快適、安全、安心社会

Work in Progress - Do not publish

つくばTIAの活用による効率的なデバイス試作と検STRD 証

銅配線

CMOS

ナノエレクトロニクスコア領域

生産ラインと拠点を結びつけた 開発とアプリ開拓のために効率的な検証環境

Work in Progress - Do not publish

まとめ

本講演では、超低電圧デバイス技術研究組合(LEAP)がつ くばイノベーションアリーナ(TIA) ナノエレクトロニクスコア領 域研究拠点(産総研SCR)で実施している「超低電圧デバイス プロジェクト」に関して、超低電圧デバイス技術開発の狙いと 現状の進捗を紹介した。

また、デバイスを集積化して動作検証するためのウェハ試 作のしくみとして、SCRと量産ラインを結ぶ新しい仕組みを紹 介した。

謝辞

本研究は、平成22年度経済産業省産業技術研究開発委託費 「低炭素社会を実現する超低電圧デバイスプロジェクト」の 委託研究として行ったものである。平成23年度からは、 独立行政法人新エネルギー・産業技術総合開発機構 (NEDO)「低炭素社会を実現する超低電圧デバイスプロジェ クトルに係わる業務委託として実施している。 プロジェクトの推進に当たり、経済産業省・NEDOからの多大 なご支援に深く感謝致します。また、デバイス試作に関しては、 独立行政法人産業技術総合研究所のスーパークリーンルー ムを使用し、ナノデバイスセンターの集積実証室にご協力頂き ました。

Work in Progress - Do not publish