

WG6(PIDS 及びRF&AMS)活動報告

ロジックおよびメモリデバイスの スケーリングトレンド ~FinFETで大きく変わるロジックトレンド

STRJ WS 2013 2014年3月7日 品川:コクヨホール

WG6主査:尾田秀一(ルネサスエレクトロニクス)

用語集

PIDS

(Process Integration, Devices, and Structures)

- Logic
 - •HP: High Performance
 - •LOP: Low Operation Power
 - LSTP: Low-Standby Power
 - •LP: Low Power
 - •FD-SOI: Fully-Depleted Silicon On Insulator
 - •MG: Multi Gates --- FinFET, TriGate等の総称
 - •Ge: Germanium
 - ·III-V: III族-V族化合物半導体
 - •Vdd,VDD: 電源電圧
 - ·Ion: オン電流、動作時駆動電流
 - ・Wfp:Wチャネル幅のfootprint 投影トランジスタ幅
 - Tr.: Transistor
 - •DIBL: Drain Induced Barrier Lowering
 - SS: Sub threshold Swing
- Memory
 - SRAM: Static Random Access Memory
 - DRAM: Dynamic Random Access Memory
 - •RCAT: Recessed-Channel Transistor
 - VTC: Vertical Channel Transistor
 - •MRAM: Magnetic(Tunneling Junction) RAM
 - STT-MRAM: Spin-Torque Transfer Magnetic RAM
 - PCRAM: Phase Change RAM

- Memory (continuation)
 - •FeRAM: Ferro-electric RAM
 - ReRAM: Resistance RAM
 - RTN: Random Telegraph Noise
 - SOMOS. Silicon Oxide Nitride Oxide Semiconductor
 - MONOS:Metal Oxide Nitride Oxide Silicon
- Reliability
 - •TDDB:Time Dependent Dielectric Breakdown
 - pBTI:Positive Bias Temperature Instability
 - nBTI:Negative Bias Temperature Instability

RF&AMS

(Radio Frequency & Analog/Mixed -Signal)

- LNA: Low Noise Amplifier
- VCO: Voltage Controlled Oscillator
- PA: Power Amplifier
- •ADC: Analog to Digital converter
- SerDes: Serializer Deserializer
- •HV: High Voltage
- CIS: CMOS Image Sensor

主査:尾田秀一(ルネサス) 副主査:井上裕文(東芝) 幹事:久本大(日立)

SWG	SSWG	委員	特別委員		
PIDS	Logic	*尾田秀一(ルネサス) 倉田創(富士通セミコン) 福崎勇三(ソニー)	若林整(東工大) 井田次郎(金工大) 平本俊郎(東京大) 高木信一(東京大) 赤坂泰志(TEL) 吉見信(aBeam)		
	Memory	*井上裕文(東芝) 岩本邦彦(ローム)	杉井寿博(LEAP) 笠井直記(東北大)		
	Reliability	*最上徹(PETRA)	丹羽正昭(東北大)		
RF&/	AMS	*久本大(日立) 田辺昭(ルネサス) 安茂博章(ソニー) 大黒達也(東芝)	田中徹(東北大)		

*印は、SSWG リーダー

PIDS: Process Integration, Devices, and Structures

- ■ロジックとメモリデバイスの15年間の技術ロードマップの策定 量産に必要なデバイス技術とデバイススペックの提示
- ■スケーリングに必要な技術やソリューションの提示
- ■技術範囲:Scopes
 - ・デバイス性能(速度、密度、電力等)
 - デバイス構造
 - ・新規プロセス・インテグレーション技術
 - •信頼性

PIDS 構成

■ロジック

Table PIDS5 Comparison of HP, LP, and III-V/Ge technologies

2013年版

	HP	LP	III-V/Ge
Speed (I/CV)	1	~0.4	>1
Dynamic power (CV^2)	1	~1	<1
Static power (I off)	1	~1×10 ⁻⁴	1

2011年版

	HP	LOP	LSTP	III-V/Ge
Speed (I/CV)	1	0.5	0.25	1.5
Dynamic power (CV^2)	1	0.6	1	0.6
Static power (I_{off})	1	5x10 ⁻²	1x10 ⁻⁴	1

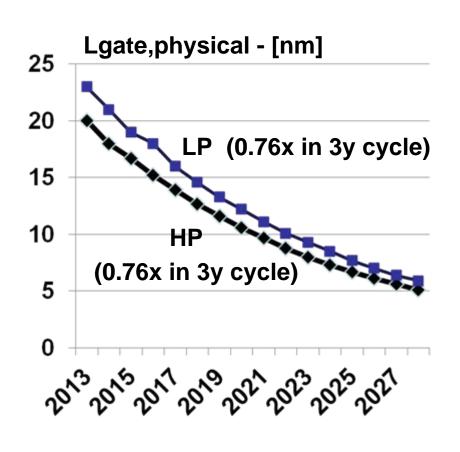
■メモリ

- DRAM
- Non-volatile
 - ・電荷蓄積型FET:浮遊ゲート(NOR and NAND)

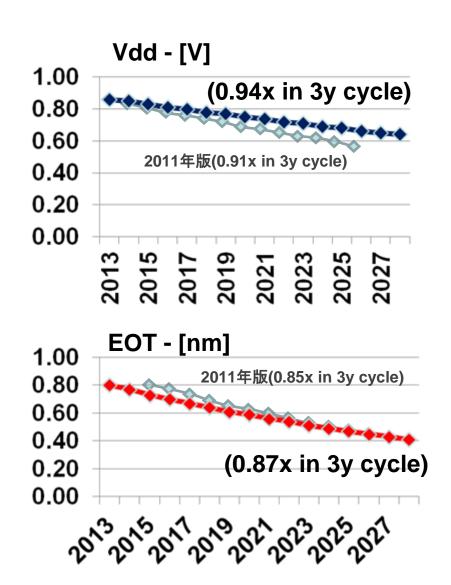
電荷トラップ型(NOR and NAND),SONOS,MONOS

•非電荷蓄積型FET:FeRAM, PCRAM, MRAM,STT-MRAM, ReRAM

■信頼性


2013年版 ロジック変更点(前提条件)

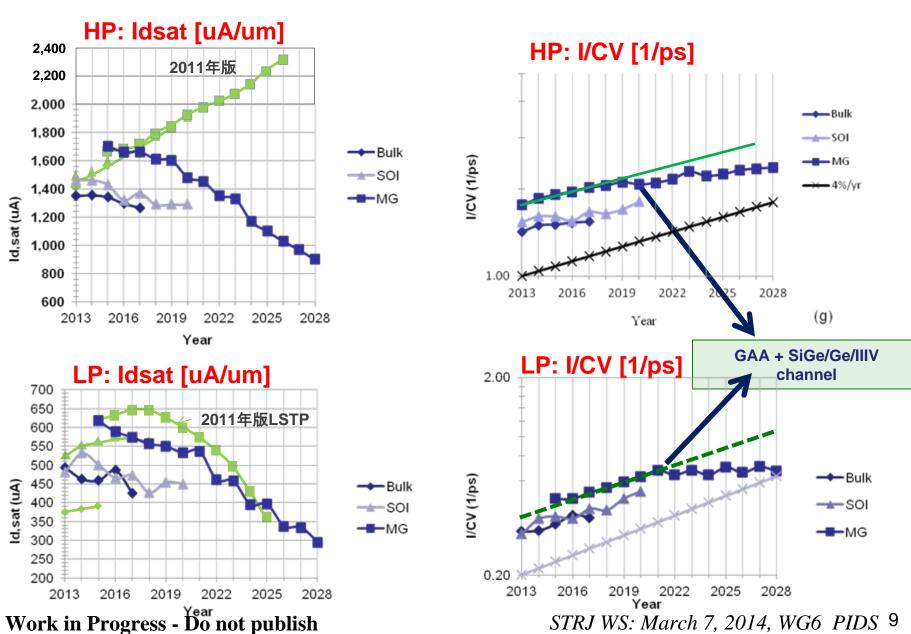
■TCADシミュレーションを使用


- ・バルクデバイス:量子効果を組み入れたdrift-diffusionモデル
- •FDSOI,MG:非平衡グリーン関数、バンド構造
- ・従来の解析モデル"MASTAR"も比較用として使用する
- ・量子効果への対応などから TCADシミュレーションに切り替えてゆく
- I/CV(速度)年率8%改善 ゲート長スケーリングは2011年版と同等 電源電圧(Vdd)のスケーリングを鈍化。Ioff は一定。
 - · Vdd が低くなると高移動度基板が必要となることが明確に
 - ・ゲート長のスケーリング限界は、トンネル電流で決まる5nm
- ■Nodeと世代は、量産 (1st、2nd ベンダー)を反映

[2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Node	'22/20	16/14	16/14	16/14	11/10	11/10	11/10	"8/7"	"8/7"	"8/7"	"6/5"	"6/5"	"6/5"	"4/3"	"4/3"	"4/3"
Gen	"G1"			"G2"			"G3"			"G4"			"G5"			"G6"

Lg、Vdd、EOTスケーリングトレンド(前提条件)

HPのLgトレンドは、ITRS2011と同じ



2013年版 ロジック変更点(TCAD Sim結果)

- Ion(オン電流) は年々低下 2019年から急激に低下
 - Ioff (オフ電流)一定:前提条件
 - → 実効ゲート電圧の減少
 - → 誘起電荷減、Ion 減
 - •2019年Lg=12nm以下では、ソースドレイン間のトンネル電流が急増
- I/CV (速度)は、2018年まで年率4%改善 2019年以降改善が止まり一定となる。 I/CV 年率4%改善維持には、
 - 2019年以降、GAAやSiGe/Ge、III-Vチャネル導入と予想される
 - ・III-V、Geのテーブルは修正が間に合わずITRS2011のまま。 (解析モデル"MASTAR"で見積もった値)
- CV (動作電力) は年率9%改善を維持

オン電流と速度のトレンド

STRJ WS: March 7, 2014, WG6 PIDS 9

オン電流低下要因

- ■実験結果基づいた解析モデルシミュレータから量子効果を含む 物理モデルに基づいたTCADシミュレータに変更
 - ・ITRS2013は、現実的な量子効果を含むモデルのTCADツールでの計算
 - → Vdd減とトンネル電流増加が電流劣化原因。 トンネル電流増加でサブスレショルドスイングが劣化。 オフ電流一定を維持するため、(仕事関数を変えて)Vthを高くする。 チャネル内に誘起される電荷減り、電流劣化が生じる
 - → ソース・ドレインの空乏層幅の最小値は5nm。 Lg<12nm(Leff<10nm)でソース空乏層とドレイン空乏層が接し トンネルリークが急増する。Lg<12nmは2019年。
 - ITRS2011までは、CV/I 13%改善が目標でロードマップは指標。 テーブル作成には、実験結果を基にした解析モデルのMASTARを使用 "nearer term"は良く合う。移動度のパラメーター"Mobility Enhancement Factor", "Ballistic Enhancement Factor"を調整し、CV/I 13%を満たす ようにテーブルを作成。結果、オン電流を年々増加。

ITRS2011 III-V 見直し要

Year

■III-Vのテーブルの改訂は、次回。 2011年年度版はMASTARで作成。 モデルが異なるため TCADツール との比較は、意味がない

■TCADシミュレーションで見積もる 予定。

i oui																
Table PIDS4 III-V/Ge High-performance Logic Techn	ology R	equiren	nents													
Year of Production	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
Logic Industry "Node Range" Labeling (nm) [based on 0.71x reduction	"22/20"	"16/14"	"16/14"	"16/14"	"11/10"	"11/10"	"11/10"	"8/7"	"8/7"	"8/7"	"6/5"	"6/5"	"6/5"	"4/3"	"4/3"	"4/3"
per "Node Range" ("Nyde" = $\sim 2x M_E$)	22,20	10,14	10/14	10/14	11/10			•	0,,	•	0.0	0,0	0,0		4,0	
Logic Industry "General Labory Louised on 0.71x Mx reduction	"G1"			"G2"			"G3"			"G4"			"G5"			"G6"
per "Generic Node " ell, " y);beginning 2013/"G1"/40nm										٠.						
MPU/ASIC Metal 1 () ½ Pitch (nm, contacted)	40	32	32	28.3	25.3	22.5	20.0	17.9	15.9	14.2	12.6	11.3	10.0	8.9	8	7.1
L _g : Physical Lgate for HP Logic (nm)	24	22	20	18	17	15.3	14.0	12.8	11.7	10.6	9.7	8.9	8.1	7.4	6.6	5.9
Mobility Enhancement Factor due to Channel Material [10]			•	-	•	-	•	•		•		•		,	_	
III-V NMOSFET MG								8	8	8	8	8	8	8	8	8
Ge PMOSFET MG								4	4	4	4	4	4	4	4	4
Effective Ballistic Enhancement Factor, Kbal [11]																
III-V NMOSFET MG								3.85	4.05	4.25	4.52	4.82	5.13	5.46	5.82	6.20
Ge PMOSFET MG						Ì		2.31	2.43	2.55	2.71	2.89	3.08	3.28	3.49	3.72

2013年版 DRAM変更点

日本PIDSの調査結果を反映

- ■ハーフピッチはやや緩和
- ■縦型トランジスタ(VCT)導入は2年遅れの2016年から、 以降、リセスチャネルトランジスタ(RCAT+Fin)を置き換える これに伴い、6F²から4F²の移行も2年遅延し2016年

	Year of Production	2013	2014	2015	2016	2017	2018	2019	2020
NEW	MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted)	40	32	32	28.3	25.3	22.5	20.0	17.9
WAS	Half Pitch (Contacted line) (nm)	28	25	22	20	18	16	14	13
IS	Half Pitch (Contacted line) (nm)	28	26	24	21	20	18	16	15
WAS	DRAM cell FET structure [6]	RCAT+Fin	VCT	VCT	VCT	VCT	VCT	VCT	VCT
IS	DRAM cell FET structure [6]	RCAT+Fin	RCAT+Fin	RCAT+Fin	VCT	VCT	VCT	VCT	VCT
WAS	Cell Size Factor: a [11]	6	4	4	4	4	4	4	4
IS	Cell Size Factor: a [11]	6	6	6	4	4	4	4	4
NEW	Gb/1chip target	4G	8G	8G	8G	8G	16G	16G	16G
		Manu	ufacturable soluti	ons exist, and are	being optimized				
			Ma	ınufacturable solu					
				Interim solu	tions are know n	•			
			Manufa	cturable solutions	are NOT know n				

DRAMセルトランジスタ構造

- RCAT+Fin: Saddle-Fin
 - Symp. on VLSI Tech. 2006, T5-1.
 - RCAT: Recessed-Ch. Tr.

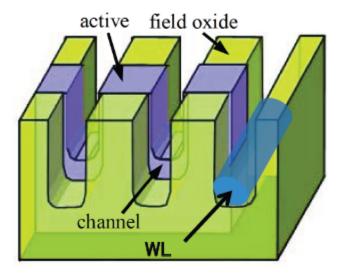


Fig. 1. Schematic diagram of S-Fin. The groove like RCAT and fin structure to the channel width direction are formed.

- VCT: Vertical Channel Transistor
 - ESSDERC 2011, p. 211.
 - ◆VPT (Vertical Pillar Tr.)

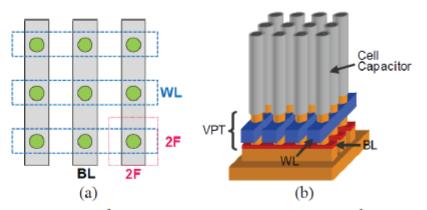


Figure 2. (a) 4F² cell layout, (b) Schematic diagram of VPT 4F² cell array

STRJ WS2013. WG6 PIDS 若林

2013年版 NAND Flash変更点

日本PIDSの調査結果と新製品のプレスリリースを反映

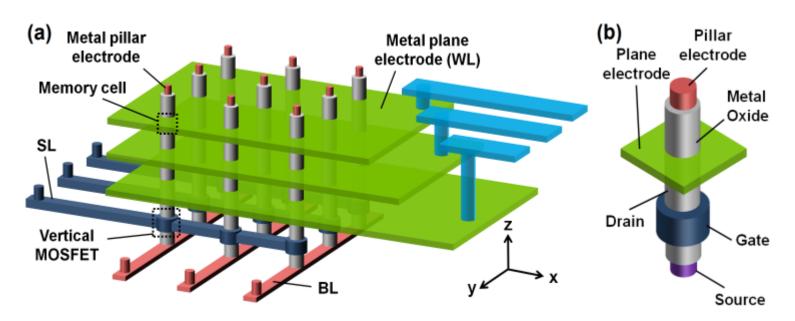
- ■2Dセルのスケーリング限界は12nm、2019年。
- ■3Dセルは、ハーフピッチが緩和し、積層数は増加する。

	NAND Flash						
	Year of Production	2013	2016	2019	2022	2025	2028
Was	2D poly 1/2 pitch	18nm	14nm	11nm	8nm	8nm	8nm
Is	2D poly 1/2 pitch	18nm	14nm	12nm	12nm	12nm	12nm
Was	3D cell x-y 1/2 pitch		32nm	28nm	24nm	18nm	
ls	3D cell x-y 1/2 pitch	64nm	45nm	30nm	27nm	25nm	22nm
Was	Cell type	FG	CT-3D	CT-3D	CT-3D	CT-3D	
Is	Cell type	FG/CT/3D	CT-3D	CT-3D	CT-3D	CT-3D	CT-3D
Unchanged	Product density	128G	512G	1T	2T	4T	8T
Was	Number of 3D layers		4-32	16-128	48-392	64-512	
ls	Number of 3D layers	16-32	16-32	32-64	64-128	96-192	192-384

FG: Floating Gate

CT: Charge Trap

2013年版 ReRAM(new)


- 4F²セルで2018年登場。2021年実装密度で3D Flashを キャッチアップ
- ■セレクタ電極、ワード線がメタル平面電極になるなど課題多い

D. Resistive memory (ReRAM)																
Year of Production	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
ReRAM technology node F (nm)						12	12	12	8	8	8	6	6	6	4	4
ReRAM cell size area factor a in multiples						4		4	4	4		,		4		
of F ^a						*	4	*	*	*	4	4	4	•	*	4
ReRAM cell footprint (nm²)						576	576	576	256	256	256	144	144	144	64	64
ReRAM array efficiency (%) (2D array)						68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%
ReRAM number of bits per cell (MLC)						2	2	2	3	3	3	4	4	4	4	4
ReRAM cell area per bit size (nm2) with						288	288	288	85	85	85	36	36	36	16	16
MLC						200	200	200	65	65	65	30	30	30	16	10
ReRAM storage density (SLC, 2D)						1.19E+11	1.19E+11	1.19E+11	2.68E+11	2.68E+11	2.68E+11	4.76E+11	4.76E+11	4.76E+11	1.07E+12	1.07E+12
ReRAM storage density (MLC, 2D)						2.38E+11	2.38E+11	2.38E+11	8.03E+11	8.03E+11	8.03E+11	1.90E+12	1.90E+12	1.90E+12	4.28E+12	4.28E+12
bits/cm2						2.30ET11	2.30ET11	2.30ET11	0.U3E+11	0.U3E+11	0.U3E+11	1.30E+12	1.502712	1.502712	4.20E+12	4.20E+12
Ref Max. 2D/3D NAND storage density				3.40E+11	3.40E+11	6.47E+11	7.33E+11	1.14E+12	1.23E+12	1.73E+12	1.73E+12	2.73E+12	2.95E+12	3.21E+12	6.68E+12	7.30E+12
(MLC, 3D max. layeres) bits/cm2				3.40E+11	3.40E+11	0.4/E+11	7.33E+11	1.14E+12	1.23E+12	1.73E+12	1.735+12	2.736+12	2.53E+12	3.21E+12	0.00E+12	7.30E+12
ReRAM 3D layers (using 4F2 GAA x-y																
selector + high ON/OFF ratio in-layer						4	4	4	8	8	8	16	16	16	32	32
selecting device)																
ReRAM cell area per bit (nm2) with MLC						72	72	72	10.67	10.67	10.67	2.25	2.25	2.25	0.5	0.5
and 3D layers						12	12	12	10.07	10.07	10.07	2.23	2.23	2.23	V.3	0.5
ReRAM array efficiency (%) (using 4F2																
GAA x-y selector + high ON/OFF ratio						48.6%	48.6%	48.6%	46.0%	46.0%	46.0%	43.6%	43.6%	43.6%	41.5%	41.5%
in-layer selecting device)																
ReRAM storage density (MLC, 3D max.																
layeres, using 4F2 GAA x-y selector +						6.75E+11	6.75E+11	6.75E+11	4.31E+12	4.31E+12	4.31E+12	1.94E+13	1.94E+13	1.94E+13	8.30E+13	8.30E+13
high ON/OFF ratio in-layer selecting						6.73E+11	0.73E+11	0.73E+11	4.51E+12	4.51E+12	4.51E+12	1.84E+15	1.54E+15	1.54E+15	0.30E+13	0.30E+13
device) bits/cm2																
ReRAM nonvolatile data retention (years)						>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10
85C						>10	710	710	710	>10	>10	710	710	>10	>10	>10
ReRAM write endurance (read/write						1.0E+09										

■ワード線が平面電極 :巨大キャパシタ、コンタクトの取り方など 課題は多い。

Source: IEDM 2012, Chen et al, "HfOx Based Vertical Resistive Random Access Memory for Cost-Effective 3D Cross-Point Architecture without Cell Selector",

2013年版 Reliability (全面改訂)

- TDDB,BTIにフォーカス
 - ・2013年のVddを10年間保証する最大電圧(Vmax)と仮定
 - ・世代ごとに10年間保証する最大電圧を記載

Year of Production	2013	2016	2019	2022	2025	2028
Logic Industry "Node Range" Labeling (nm) [based on $0.71x$ reduction per "Node Range" ("Node" = $\sim 2x$ Mx)	"22/20"	"16/14"	"11/10"	"8/7"	"6/5"	"4/3"
Logic Industry "Generation" Label (nm) [based on 0.71x Mx reduction per "Generic Node" (or .5x cell; 2x density);beginning 2013/"G1"/40nm	"G1"	"G2"	"G3"	"G4"	"G5"	"G6"
MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted)	40	28.3	20.0	14.2	10.0	7.1
Lg Proposed for 2013 (Bulk, SOI, MG)	20.00	15.22	11.58	8.82	6.71	5.11
Vdd Proposed for 2013 (Bulk, SOI, MG)	0.864	0.813	0.765	0.720	0.678	0.638
EOT Proposed for 2013 (Bulk, SOI, MG)	0.80	0.70	0.61	0.54	0.47	0.41
nTDDB Vmax (Max Vdd for 10 years mean lifetime)[1]	0.864	0.838	0.815	0.796	0.779	0.765
nMOSFET pBTI Vmax (Max Vdd for 10 years mean lifetime)[2]	0.864	0.799	0.745	0.701	0.664	0.634
pMOSFET nBTI Vmax (Max Vdd for 10 years mean lifetime)[3]	0.864	0.768	0.692	0.630	0.581	0.542

CMOS

・設計の強い希望により、planar bulk PMOSに限りfT値を テーブルに追加。PIDSのIon_nとIon_pの比を用いる。

■Bipolar

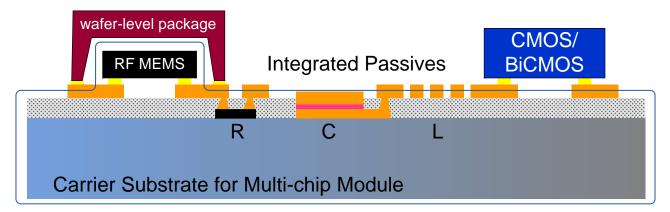
・高速のSiGe PNPは、テーブルから削除。 C-BiCMOSとしての利用が非常に少ないため。

III-V

- •InP HEMTとGaAs HEMTは一つにして、メトリックを統一。
- •InGaP HBTは、ポータブルデバイスのパワーアンプとしての要求があるため、再度、載せることにする。
- •InP HBTのメトリックは、SiGe biolarと合わせることにする。

日本PIDS 2014年の予定

- オン電流低減の見直し Weff / Wfootprint の導入
 - •FinFETのオン電流を Weff / Wfootprint を用いて定義する Ids = Idsat(PIDS table) × Weff / Wfootprint
 - ・現状の定義は Weff = 2 × Fin height, Fin Pitch=0.75 × (M1 harf pich) 結果、Weff / Wfootprint=1.6 (Intel22nmは、1.27)
- メモリ大手へのサーベイの実施
 - •DRAM、NAND Flashで実施
 - ・ORTCと整合し、7月までに原案を作成予定
- ■メモリの4F²セル、3Dセルの実現に向けての課題の整理



- RF & A/MS CMOS:ファンダリーを含む大手のサーベイを実施
- •PIDSのテーブルを基に、RF/AMSの CMOS ロードマップを作成してきたが、 実測と異なっており、その見積もり方法の検証が必要 メタルゲートや化合物半導体(III-V, Ge, etc)もテーブル化されており、 これらの技術に対しても検証が必要。

■On-Chip Passives

- ■受動部品は、基板上で作成されるon chip passiveについてRoadmap table が存在する。
- •今後は、実装基板上で作成されるものやMEMSによる高性能化が求められ るため、コラボレーションして受動部品のロードマップを考案する。

まとめ

- STRJ WG6の活動を報告した。
- ITRS2013のPIDS、RF/AMSを紹介し、 日本PIDS: STRJ WG6の2014年に向けた活動を紹介した。