WG6(PIDS 及びRF&AMS)活動報告 🖤

ロジックおよびメモリデバイスの スケーリングトレンド ~見えてきたFinFET時代のスケーリングトレンド~

STRJ WS 2014 2015年3月6日 品川:コクヨホール

WG6主査:福崎勇三(ソニー)

用語集

■ PIDS

(Process Integration, Devices, and Structures)

- Logic
- •HP: High Performance
- ·LP: Low Power
- •FD-SOI: Fully-Depleted Silicon On Insulator
- ・MG: Multi Gates --- FinFET, TriGate等の総称
- ·NW: Nanowire
- ·GAA: Gate All Around
- ·Ge: Germanium
- ·III-V: III族-V族化合物半導体
- ·Vdd,VDD: 電源電圧
- ·Ion: オン電流、動作時駆動電流
- ・Wfp: Wチャネル幅のfootprint (MGに対応)
- ・Weff: 実効Wチャネル幅 (MGに対応)
- Tr.: Transistor
- •DIBL: Drain Induced Barrier Lowering
- ·SS: Sub-threshold Swing

Memory

- ·SRAM: Static Random Access Memory
- •DRAM: Dynamic Random Access Memory
- •RCAT: Recessed-Channel Array Transistor
- VCT: Vertical Channel Transistor
- MRAM: Magnetic (Tunneling Junction) RAM
- •STT-MRAM: Spin-Torque Transfer MRAM
- PCRAM: Phase Change RAM

- Memory (continuation)
 - ·FeRAM: Ferro-electric RAM
 - ·ReRAM: Resistance RAM
 - •RTN: Random Telegraph Noise
 - ·SONOS: Silicon Oxide Nitride Oxide Semiconductor
 - •MONOS: Metal Oxide Nitride Oxide Silicon

Reliability

- •TDDB: Time Dependent Dielectric Breakdown
- •PBTI: Positive Bias Temperature Instability
- •NBTI: Negative Bias Temperature Instability

■ RF&AMS

(Radio Frequency & Analog/Mixed -Signal)

- ·LNA: Low Noise Amplifier
- VCO: Voltage Controlled Oscillator
- ·PA: Power Amplifier
- •ADC: Analog to Digital converter
- ·SerDes: Serializer Deserializer
- ·HV: High Voltage
- ·CIS: CMOS Image Sensor

2014年度 WG6メンバーと活動

主査:福崎勇三(ソニー) 副主査:井上裕文(東芝) 幹事:久本大(日立)

	<u> </u>	リーロ・ハートロス(不た)	TIT 174774 (H4)
SWG	SSWG	委員	特別委員
PIDS	Logic	若林整(東工大) 井田次郎(金工大) 平本俊郎(東京大) 高木信一(東京大) 赤坂泰志(TEL) 吉見信(aBeam)	
	Memory	*井上裕文(東芝) 岩本邦彦(ローム) 笠井直記(NEC)	杉井寿博(LEAP)
	Reliability	*最上徹(PETRA)	丹羽正昭(東北大)
RF&	AMS	*久本大(日立) 田辺昭(ルネサス) 安茂博章(ソニー) 大黒達也(東芝)	田中徹(東北大) 堀敦(日本インター) * 印は、SSWG リーダー

■国際会議 ; ドイツ(4月) 井上委員、平本特別委員、安茂委員、福崎 韓国(10月) 大黒委員、福崎

■国内会議;6回

■ヒアリング ; 3回 2014/8/29 「VLSI2014まとめ」 若林特別委員 2015/1/21 「IoT時代のデバイス」 東工大 益教授 2015/2/13 「IEDM2014まとめ」 若林特別委員

PIDS構成

■ロジック

- HP = High Performance (高速)
- LP = Low Power (例;高性能モバイルなど)
- ●III-V/Ge = Si代替となるCh材料、低パワーかつ高速向け

	HP	LP	III-V/Ge HP (HP)
Speed (I/CV)	Ref	Slower	Fastest
Dynamic Power (CV2f)	Ref	Lowest	Mildly lower
Static Power (I _{off})	Ref	Lowest	Higher

■ メモリ

- DRAM
- Non-volatile
 - ·電荷蓄積型FET:浮遊ゲート (NOR and NAND)

電荷トラップ型 (NOR and NAND),SONOS,MONOS

·非電荷蓄積型FET: FeRAM, PCRAM, MRAM, STT-MRAM, ReRAM

■ 信頼性

More Moore Mission

- More MooreをPPAC(Power、Performance、Area、Cost)の評価軸で維持して、Big Data, Mobile, クラウド (IoT, サーバ)用途デバイスのスケーリングを行う為に必要な物理的、電気的、信頼性の要求スペックの提示
- ■ロジックとメモリの主流となる量産技術について15年間のデバイス技術ロードマップの策定

- □技術範囲 (PIDS) : Scopes
 - ・デバイス性能(速度、密度、電力等)
 - ・デバイス構造
 - ・新規プロセス・インテグレーション技術
 - ·信頼性

Cloud and mobile computing drives More Moore Williams

Application KPIs and PPAC scaling for More Moore Will

- KPI: 高パフォーマンス @ 同一パワー密度

- 制約:温度,エネルギー消費

Mobile computing

- KPI:同一パワー、コストにおいて性能と機能の向上

- 制約:コスト、バッテリ、他の部品のリークも増大

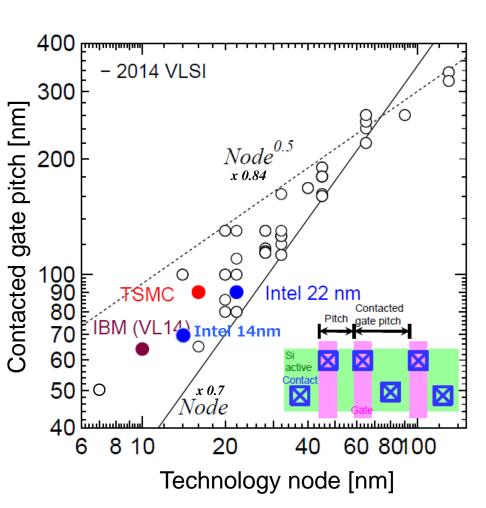
●自律センシング & コンピューティング (IoT)

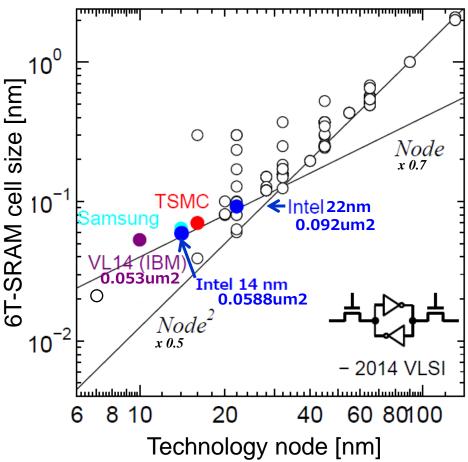
- KPI:リーク削減、Vth近傍のバラつき低減

- 制約:フォームファクタ、コスト、セキュリティ

More Moore platform for node-to-node PPAC value

- **P**erformance: >50% 高性能 @ 同一パワー
- Power: >60% パワー削減 @ 同一性能
- Area: >50% エリア削減
- Cost: <25% ウエファーコスト増 … 30%コストダウン @同一機能チップ




Area scaling per technology node

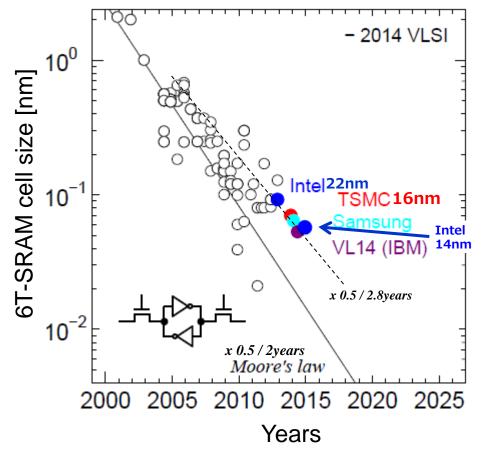
■ Pitch scalingは進行中

■ SRAM-cell-size scalingは鈍化傾向

出典;東工大 若林特別委員

STRJ WS: March 6, 2015, WG6 PIDS


Area scaling per years



■ Scalingは2.8年毎に鈍化

■ SRAM-cell-size scalingも2.8年毎に鈍化

Mooreの法則(Area Scaling)は近年鈍化傾向(2年→2.8年)

出典;東工大 若林特別委員

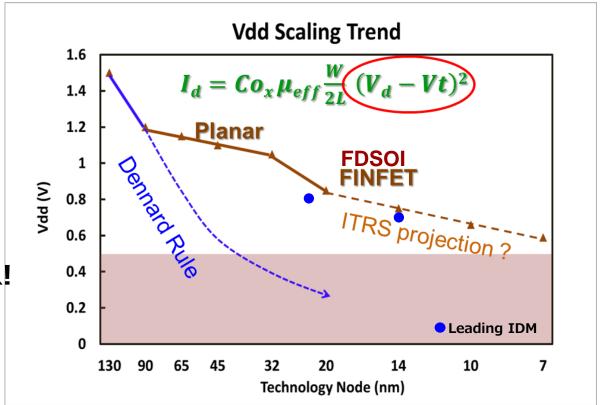
STRJ WS: March 6, 2015, WG6 PIDS

Vdd scaling slowed down since N90

Mobile Computing – The Vdd Scaling Issue

Vdd scaling most difficult: V_t associated with leakage – SCEs, RDF

Past: Flops/Sec


Now: Flops/W

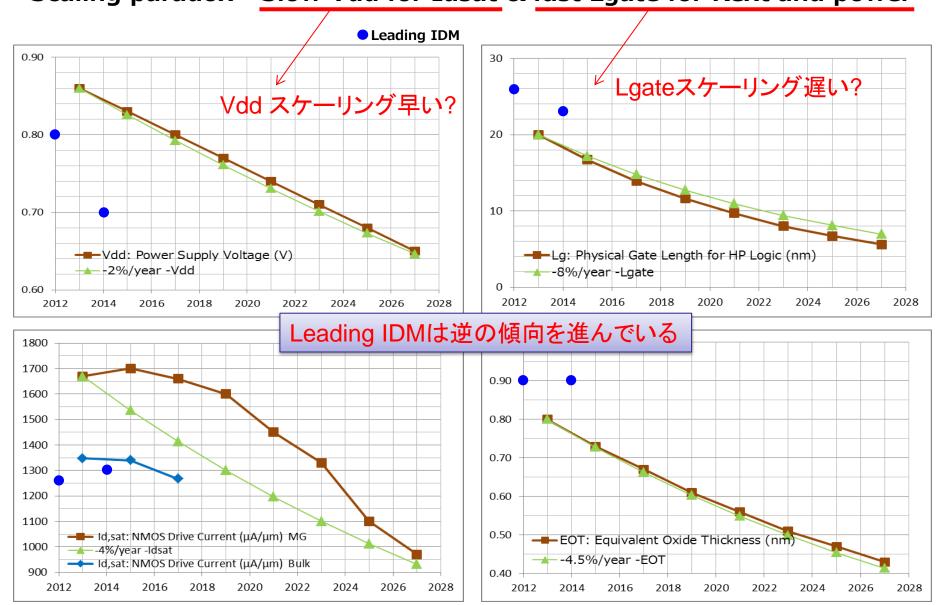
ALL ABOUT POWER!

N90: 90nm Node

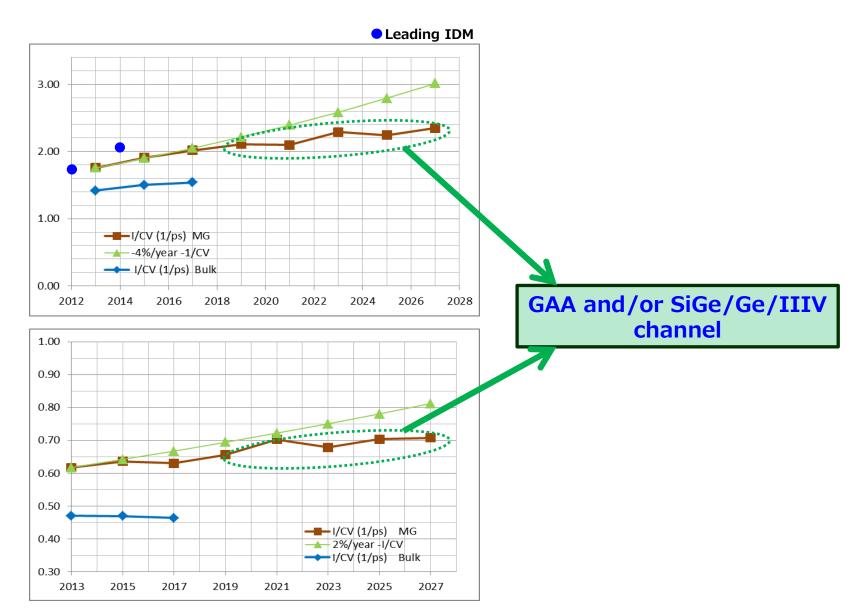
FOM: Figure of Merit

SCE: Short Channel Effect

Low Power Device: SS, DIBL, σΔVt

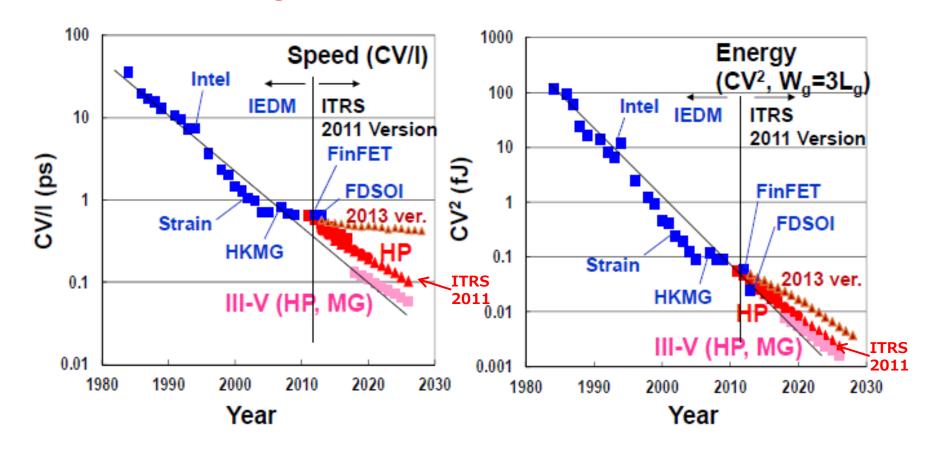

RDF: Random Dopant Fluctuation

2013 ITRS, scaling knobs

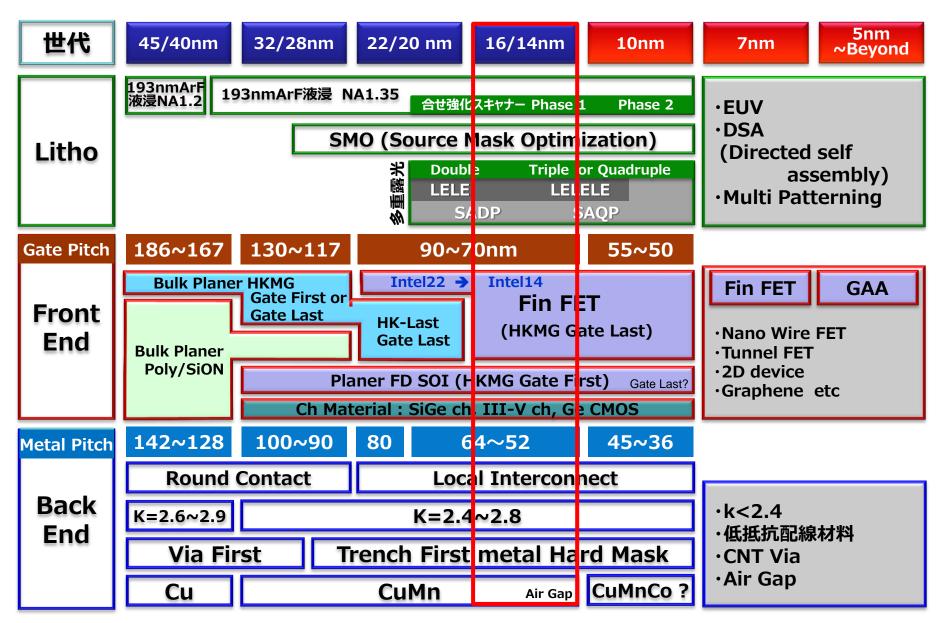

11

Scaling paradox - Slow Vdd for Idsat & fast Lgate for Rext and power

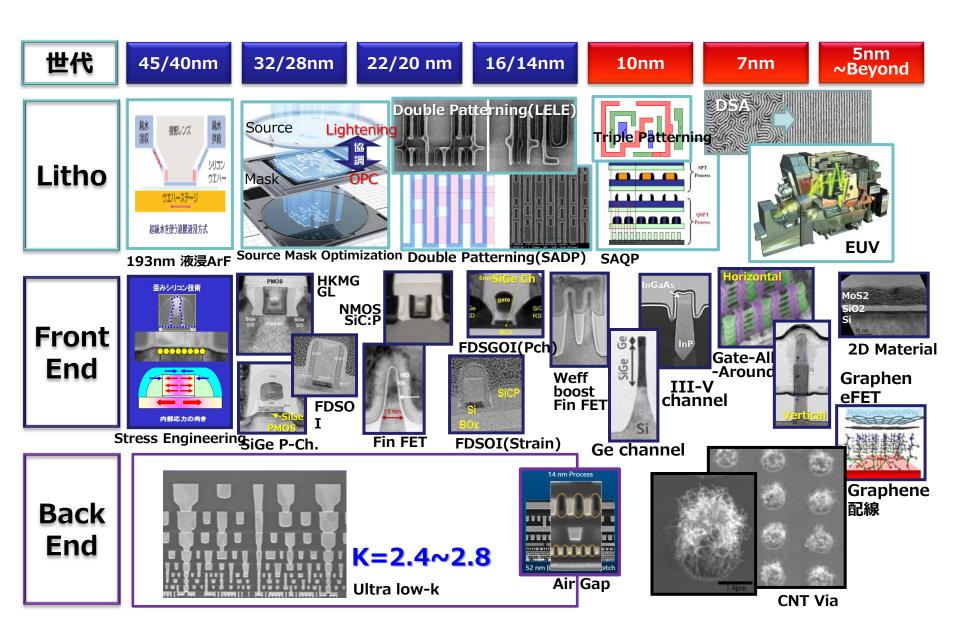
ITRS 2013, performance



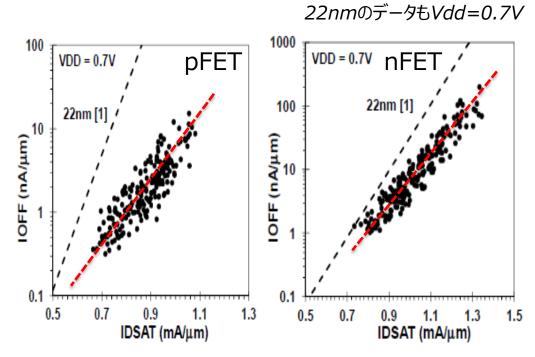
ITRS2011→2013で鈍化傾向


性能指標 4% キープ @2013 ITRS → 従来から鈍化

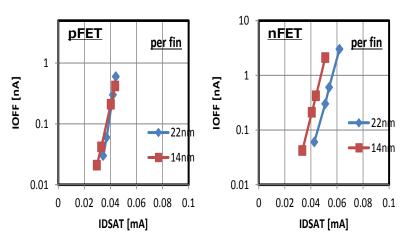
出典;東大 平本特別委員


世代毎のTechnology

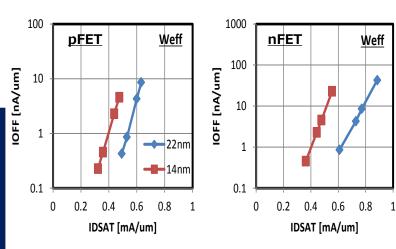
世代毎のTechnology(説明)



14nm FinFET, Leading IDM



DC特性;単位Wfp(FootPrint)で規格化



- ✓ 単一Weff当たりのIon/Ioffは22nmの方が良い
- ✓ Fin高さを増加→単位Wfp当たりのWeff(電流パス)を稼ぎ、実効的な電流を増大させている
- ✓ この時、Weffで見たときIoffを改善させている Fin幅をスケーリングしているので電界強度はUp

Fin当たりの特性

単位Weffで規格化

Scaling enablers for coming nodes

17

	2014	2016	2018	2021	2024	2027
Node	N14	N10	N7	N5	N3	N1.5
Ground rules(CPP,MP,FP,LG)	70,52,42,22	52,36,27,16	42,24,18,12	32,16,12,10	25,10,NA,10	25,10,NA,10
Device structure	finFET Planar	finFET Planar	finFET Lateral NW	Lateral NW	Stacked Vertical NW	Stacked Vertical NW
Substrate	Si, SOI	Si, SOI	Si, SOI, SRB	Si, SOI, SRB	Si, SOI	Si, SOI
S/D strain	Yes	Yes	Yes	Yes	Yes	Yes
Strained substrate	No	Yes	Yes	Yes	Yes	Yes
N-Ch	Si	sSi	sSi, Ge	sSi, Ge, IIIV	sSi, Ge, IIIV	sSi, Ge, IIIV
P-Ch	Si	SiGe	SiGe, Ge	SiGe, Ge	Ge	Ge
Transport scheme	DD	Quas Ballis.	Ballistic	Ballistic Band-engine.	Ballistic Band-engine.	Ballistic Band-engine.
Contact scheme	Silicide, DC	MIS, DC	MIS, DC	MIS, DC	MIS, DC	MIS, DC
Vdd	0.70	0.65	0.60	0.55	0.50	0.45
Weff at unit footprint	2	2.5	4	6	6	6

Leading IDM	22nm	14nm	10nm?
Fin Height	34	42	50 ?
Wfin	10	9	8?
Weff at unit footprint	1.3	2.2	3.6 ?
Ratio Weff Node to Node	N/A	1.7	1.63 ?

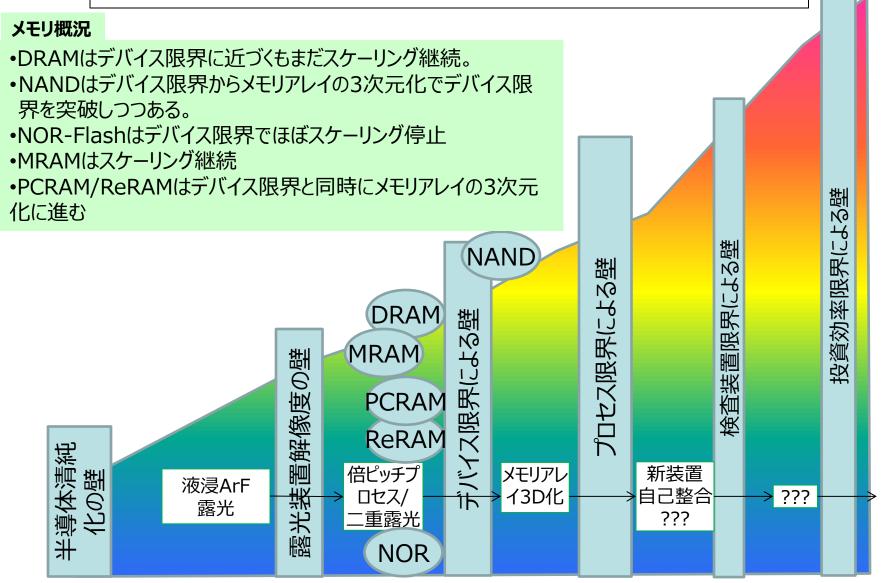
N14: 14nm Node

CPP: Contacted Poly Pitch

MP: Metal Pitch

FP: Fin Pitch

LG: Gate Length


NW: Nanowire

MIS: Metal Insulator Silicon

メモリのトレンドと今後のスケーリング見込み

メモリデバイスのスケーリング状況と今後の壁イメージ図

DRAMの状況と2015年活動計画

日本PIDSの調査結果を反映した2013年版では、ハーフピッチはや粉緩和。縦型トランジスタ (VCT)導入は2年遅れの2016年から、以降、リセスチャネルトランジスタ (RCAT+Fin)を置き換える。これに伴い、6F²から4F²の移行も2年遅延し2016年

上記トレンドも大きく変わらず2014年はほぼ2013年版通りにスケーリング。2015年版に向けて、再度日本PIDSがサーベイを含めトレンドを調査。特に4F2化の遅れ状況を反映させる予定。

	Year of Production	2013	2014	2015	2016	2017	2018	2019	2020
NEW	MPU/ASIC Metal 1 (M1) 1/2 Pitch (nm) (contacted)	40	32	32	28.3	25.3	22.5	20.0	17.9
WAS	Half Pitch (Contacted line) (nm)	28	25	22	20	18	16	14	13
IS	Half Pitch (Contacted line) (nm)	28	26	24	21	20	18	16	15
WAS	DRAM cell FET structure [6]	RCAT+Fin	VCT	VCT	VCT	VCT	VCT	VCT	VCT
IS	DRAM cell FET structure [6]	RCAT+Fin	RCAT+Fin	RCAT+Fin	VCT	VCT	VCT	VCT	VCT
WAS	Cell Size Factor: a [11]	6	4	4	4	4	4	4	4
IS	Cell Size Factor: a [11]	6	6	6	4	4	4	4	4
NEW	Gb/1chip target	4 G	8G	8 G	8 G	8G	16G	16G	16G
		Manu	ıfacturable soluti	ons exist, and are	being optimized				
			Ma	nufacturable solu					
				hterim solut	tions are known	•			
			Manufa	rturable colutione	are NOT known				

参考)DRAMセルトランジスタ構造

埋め込み型サドルFinトランジスタ(現在)

- RCAT+Fin: Saddle-Fin
 - Symp. on VLSI Tech. 2006, T5-1.
 - RCAT: Recessed-Ch. Tr.

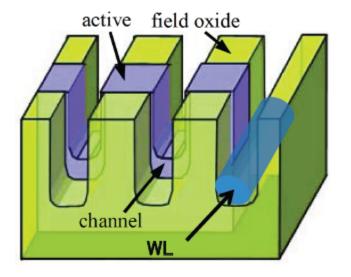


Fig. 1. Schematic diagram of S-Fin. The groove like RCAT and fin structure to the channel width direction are formed.

垂直トランジスタ(4F2化で必須)

- VCT: Vertical Channel Transistor
 - ESSDERC 2011, p. 211.
 - ◆VPT (Vertical Pillar Tr.)

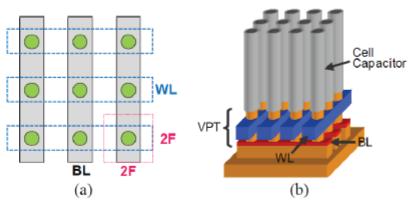


Figure 2. (a) 4F² cell layout, (b) Schematic diagram of VPT 4F² cell array

STRJ WS2013, WG6 PIDS 若林

NANDの状況と2015年活動計画

2013年版では、NANDFlashの3D化について、大きく積層数を 減らす方向の予測に変更し、2013-2014年に製品化が始まりつ つあり、24層、32層とほぼ想定通りの積層数となった。2015年版 に向けて、日本PIDS中心にサーベイ・技術予測を行いUpdate見

込み。

	NAND Flash						
	Year of Production	2013	2016	2019	2022	2025	2028
Was	2D poly 1/2 pitch	18nm	14nm	11nm	8nm	8nm	8nm
ls	2D poly 1/2 pitch	18nm	14nm	12nm	12nm	12nm	12nm
Was	3D cell x-y 1/2 pitch		32nm	28nm	24nm	18nm	
ls	3D cell x-y 1/2 pitch	64nm	45nm	30nm	27nm	25nm	22nm
Was	Cell type	FG	CT-3D	CT-3D	CT-3D	CT-3D	
ls	Cell type	FG/CT/3D	CT-3D	CT-3D	CT-3D	CT-3D	CT-3D
Unchanged	Product density	128G	512G	1T	2T	4T	8T
Was	Number of 3D layers		4-32	16-128	48-392	64-512	
ls	Number of 3D layers	16-32	16-32	32-64	64-128	96-192	192-384

ISSCC2014, Three-Dimensional 128Gb MLC Vertical NAND Flash-Memory with 24-WL Stacked Layers and 50MB/s High-Speed Programming, Ki-Tae Park et al.

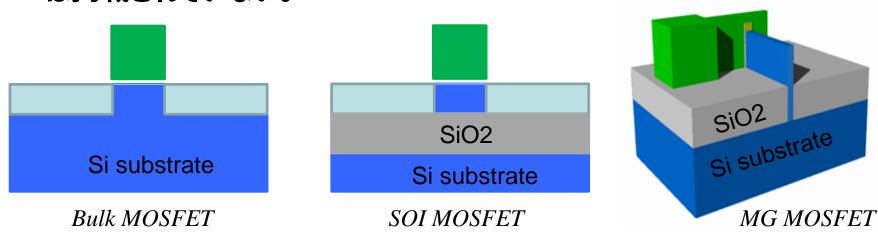
ReRAMの状況

2013年版より、ReRAMをtable化。

2018年に4F2ReRAMで登場し、 2021年に3D-NAND Flashを 2021年に集積度で上回ると予測。 セレクターの選択、安定した低電流 スイッチング膜、巨大平面電極等が

(a) Metal pillar (b) Pillar Metal plane electrode **Plane** electrode electrode (WL) electrode Memory cell Metal Oxide Vertical MOSFET

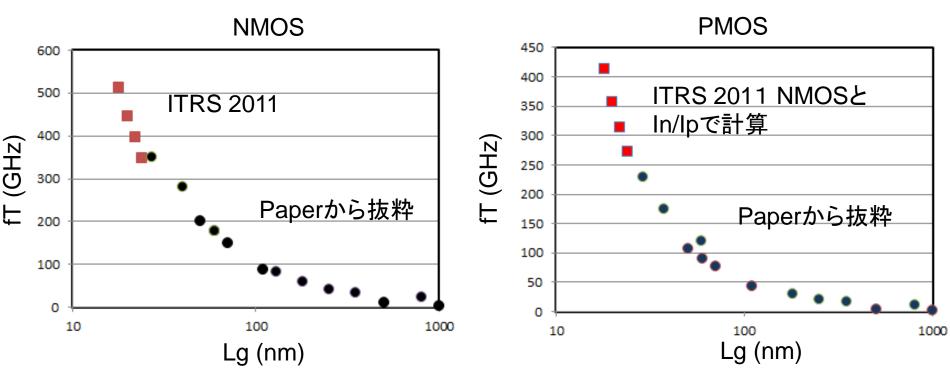
開発の課題となる。


Source: IEDM 2012, Chen et al, "HfOx Based Vertical Resistive Random Access Memory for Cost-Effective 3D Cross-Point Architecture without Cell Selector",

D. Resistive memory (ReRAM)																
Year of Production	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
ReRAM technology node F (nm)						12	12	12	8	8	8	6	6	6	4	4
ReRAM cell size area factor a in multiples of F ²						4	4	4	4	4	4	4	4	4	4	4
ReRAM cell footprint (nm²)						576	576	576	256	256	256	144	144	144	64	64
ReRAM array efficiency (%) (2D array)						68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%	68.5%
ReRAM number of bits per cell (MLC)						2	2	2	3	3	3	4	4	4	4	4
ReRAM cell area per bit size (nm2) with							200	222			0.5				40	40
MLC						288	288	288	85	85	85	36	36	36	16	16
ReRAM storage density (SLC, 2D)						1.19E+11	1.19E+11	1.19E+11	2.68E+11	2.68E+11	2.68E+11	4.76E+11	4.76E+11	4.76E+11	1.07E+12	1.07E+12
ReRAM storage density (MLC, 2D)						2.38E+11	2.38E+11	2.38E+11	8.03E+11	8.03E+11	8.03E+11	1.90E+12	1.90E+12	1.90E+12	4.205.42	4.28E+12
bits/cm2						2.38E+11	2.38E+11	2.38E+11	8.03E+11	8.03E+11	8.03E+11	1.90E+12	1.90E+12	1.90E+12	4.28E+12	4.28E+12
Ref Max. 2D/3D NAND storage density				0.405.11	0.405.11	6.47E+11	7.33E+11	1.14E+12	1.23E+12	1.73E+12	1.73E+12	2.73E+12	2.95E+12	3.21E+12	6.68E+12	7.30E+12
(MLC, 3D max. layeres) bits/cm2				3.40E+11	3.40E+11	6.4/E+11	7.33E+11	1.14E+12	1.23E+12	1./35+12	1./3E+12	2./3E+12	2.53E+12	3.21E+12	0.00E+12	7.30E+12
ReRAM 3D layers (using 4F2 GAA x-y																
selector + high ON/OFF ratio in-layer						4	4	4	8	8	8	16	16	16	32	32
selecting device)																
ReRAM cell area per bit (nm2) with MLC						72	72	72	10.67	10.67	10.67	2.25	2.25	2.25	0.5	0.5
and 3D layers						12	12	12	10.07	10.07	10.07	2.23	4.43	4.43	V.J	V.J
ReRAM array efficiency (%) (using 4F2																
GAA x-y selector + high ON/OFF ratio						48.6%	48.6%	48.6%	46.0%	46.0%	46.0%	43.6%	43.6%	43.6%	41.5%	41.5%
in-layer selecting device)																
ReRAM storage density (MLC, 3D max.																
layeres, using 4F2 GAA x-y selector +						6.75E+11	6.75E+11	6.75E+11	4.31E+12	4.31E+12	4.31E+12	1.94E+13	1.94E+13	1.94E+13	8.30E+13	8.30E+13
high ON/OFF ratio in-layer selecting						5.752-77	5.752	5.1.52	4.012112	4.012112	4.012112	11042110	1.542	1.542	0.002110	0.002-10
device) bits/cm2																
ReRAM nonvolatile data retention (years)						>10	>10	>10	>10	>10	>10	>10	>10	>10	>10	>10
85C																
ReRAM write endurance (read/write						1.0E+09										

RF and analog/MS CMOS working group

- 1. PIDS tableの値を用いて、バルク、SOIそしてMG MOSFETのRF及 びanalogのroadmap table*を作成した。
- 2. RF及びanalog特性としては、fT, fmax, 1/f noise, minimum noise figure at 60GHz, low-frequency analog power gain, maximum stable gain at 60GHz, analog transistor voltage gain, Vth matchingがある。
- 3. 設計者からの要求が高いPMOSのfTについて、バルクMOSに関して追加した。
- 4. このtable*は、PIDS tableのリリースが遅れたために、2013年版には掲載されていない。



* *Modified Table(P.26)*

PMOSのfT見積もり

- 1. 2011 versionでのfTと既発表の比較から、bulk NMOSに関しては既発表値と良く合っていることを確認。
- 2. PIDSのroadmapのIon_n/Ion_pを用いて、bulk PMOSのfTを計算。この fTも既発表値と良く合っていることを確認。
- 3. 上記の結果から、2013 versionのbulk PMOSのfT見積もりには、PIDSの roadmapのIon_n/Ion_pを用いることとした。

Work in Progress - Do not publish

2013 versionの現状

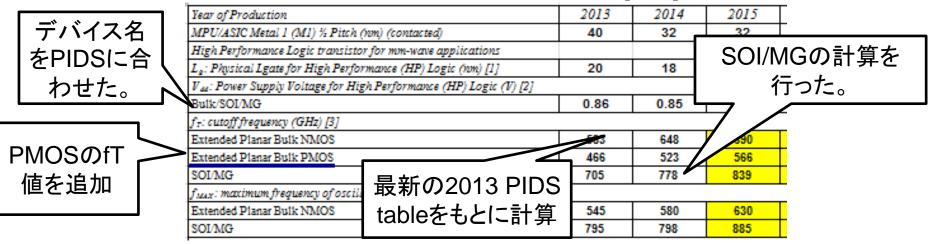
2013 version of PIDS table (HP)

Year of Production	2013	2014	2015
Logic Industry "Node Range" Labeling (rvn) [based on 0.71x reduction per "Node	114 (214 411		114414011
Range" ("Node" = $\sim 2x Mx$)	"16/14"		"11/10"
MPU/ASIC Metal 1 (M1) ½ Pitch (rnn) (contacted)	40	32	32
Lg: Physical Gate Length for HP Logic (rvn)	20	18	16.7
L ch : Effective Channel Length (rnn) [3]	16.0	14.4	13.4
V dd: Power Supply Voltage (V)			
Bulk/SOI/MG	0.86	0.85	0.83
EOT: Equivalent Oxide Thickness			
Bulk/SOI/MG (nm)	0.80	0.77	0.73
Dielectric constant (K) of gate dielectrics	12.5	13.0	13.5
Physical gate oxide thickness (nm)	2.56	2.57	2.53
Channel Doping (10 18 /cm 3) [4]			
Bulk	6.0	7.0	7.7
SOI/MG	0.1	0.1	0.1

2013 version of RF CMOS table (HP)

デバイス名 の違い

						_
Ye	ar of Production		2013	2014	2015	
M	PU/ASIC Metal 1 (M1) ½ Pitch (n	m) (contacted)	40	32		
Hi	igh Performance Logic transistor j	for mm-wave applications			MGO	見積もりが
L_s	: Physical Lgate for High Perfori	nance (HP) Logic (nm) [1]	20	18		
V_{d}	id : Power Supply Voltage for High	n Performance (HP) Logic (V) [2]			されて	ていない。
Bυ	ilk/UTB FD/MG		0.85	0.82		
f_T	: cutoff frequency (GHz) [3]				7 /	
Ex	stended Planar Bulk		445	512	/8	
U	TB FD		477	545	614	
M	G		7		620	
f_M	ux: maximum frequency of oscill	古い2011 PIDS				
Ex	stended Planar Bulk (junction)	• •	389	439	510	
U	TB FD (body)	tableをもとに計算	412	462	531	
M	G (body)				560	


RF CMOS tableの修正

2013 version of PIDS table (HP)

Year of Production	2013	2014	2015
Logic Industry "Node Range" Labeling (nm) [based on 0.71x reduction per "Node Range" ("Node" = ~2x Mx)	"16/14"		"11/10"
MPU/ASIC Metal 1 (M1) ½ Pitch (vm) (contacted)	40	32	32
L g: Physical Gate Length for HP Logic (rvm)	20	18	16.7
L ch : Effective Channel Length (rnm) [3]	16.0	14.4	13.4
V dd: Power Supply Voltage (V)			
Bulk/SOI/MG	0.86	0.85	0.83
EOT: Equivalent Oxide Thickness			
Bulk/SOI/MG (nm)	0.80	0.77	0.73
Dielectric constant (K) of gate dielectrics	12.5	13.0	13.5
Physical gate oxide thickness (nm)	2.56	2.57	2.53
Channel Doping (10 12 /cm 3) [4]			
Bulk	6.0	7.0	7.7
SOI/MG	0.1	0.1	0.1

Modified 2013 version of RF CMOS table (HP)

まとめ

STRJ WG6 (PIDS、RF&AMS)の活動を報告した。

- 最新版ITRS2013と、14nmプロセスの性能を比較し、 2015ITRS以降に向けて議論中のスケーリングパラメータ 表を示した。 メモリについて、今後のスケーリング見込み、各メモリの状況と 2015ITRSサーベイ計画を示した。
- RF&AMSの活動についてITRS2013の現状と改訂中のテーブルについて示した。