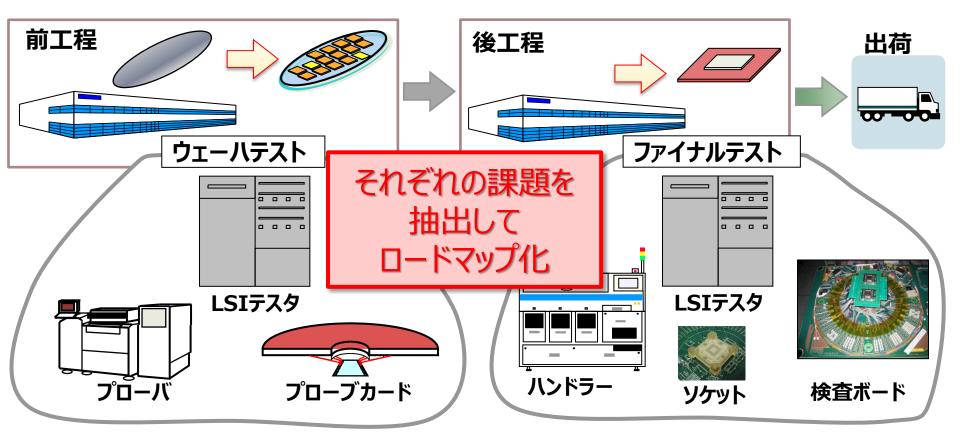


2015年度STRJワークショップ IoT時代のスマートテスト

WG2(テストWG) 安藏 顕一(東芝)

目次

- 1. テストWG活動
- 2. WG2体制
- 3. WG2活動実績
- 4. 2015度活動
- 5. ATE-SWG活動
- 6. DFT-SWG活動
- 7. WG2活動まとめ
- 8. 未来への展望


略語	用語	説明
ATE	Automatic Test Equipment	大型テスタ他テスト装置・システム全般の呼称
DFT	Design for Test/Testability	テスト容易化を考慮した設計
ATPG	Automatic Test Pattern Generation	自動テストパターン生成
BIST	Built-In Self-Test	チップ内蔵の自己テスト回路、およびこれを用いるテスト手法
SoC	System-on-a-Chip	複数の機能ブロックなどを一つのLSIに搭載してシステムを実現する設計手法
SiP	System-in-a-Package	複数のLSIを一つのパッケージに搭載してシステムを実現する設計・実装手法
TSV	Through-Silicon Via	シリコン製半導体チップの内部を垂直に貫通する電極。主に3D ICの積層チップ間接続に使用
MEMS	Micro Electro Mechanical Systems	加速度センサ等の微小な電気機械システム
IP	Intellectual Property	一般には知的財産の意。LSI設計では、ある機能を実現する回路部品の情報を意味する
OSAT	Outsourced Semiconductor Assembly and Test	半導体組み立て検査受託会社

用語	説明
ハンドラ	テスト時のチップの搬送、テストソケットへの装着、温度制御等を一貫して行う装置
プローブカード(Probe Card)	ウェーハ上のLSIを電気測定するための冶具。髪の毛以下の太さの針(プローブ)の集合体
バーンイン	チップの初期劣化不良を検出するため熱・電圧ストレス等を長時間かける工程
テストソケット(ソケット)	テスト時にLSIパッケージを挿入固定するための治具
治工具	ソケットやプローブカード、インタフェースボード等、テスト時に必要な治具
スキャンテスト	ランダムロジックを対象とするDFTの代表的手法
同測テスト	複数のチップを同時にテストする手法、多数個同時測定テスト。テストスループット向上によるコスト低減が可能
コンカレントテスト	チップ内の複数のコアおよび回路を並列にテストする手法
高速IO (HSIO/High-Speed IO)	LSIが外部と高速にデータ送受信を行うための回路やインタフェース。USB,DDR,SATA等標準規格がある
3D IC	チップ同士を三次元的に積層し、TSV等で互いに接続した構造を持つIC

1. テストWG活動: 位置づけ

- テスト= 製造工程において、良品/不良品を選別するための手段
 - LSIテスタを用いることが一般的
 - <u> LSIとLSIテスタの接続のために、様々な検査冶具を用いる</u>
 - 、プローブカード、プローバ、ハンドラー、ソケッ<u>ト、</u>検査ボード・・・
 - LSIにはテストを容易にするための設計 (DFT) を施している

1. テストWG活動: ITRS2.0

2005~2010年度: SiPのテスト技術について調査、課題検討

・さまざまな種類のダイを 1 パッケージで実装した場合のテストと DFTの技術的課題を抽出

2011~2012年度: 3D-ICのテスト技術の調査、課題検討

・TSV(Through Silicon VIA)ベースの積層IC

"Heterogeneous Integration" Focus Topicに属する活動

2014年度: ITRS2.0公表

2015年度: 異種デバイス(MEMS)のDFT/テスト手法を検討

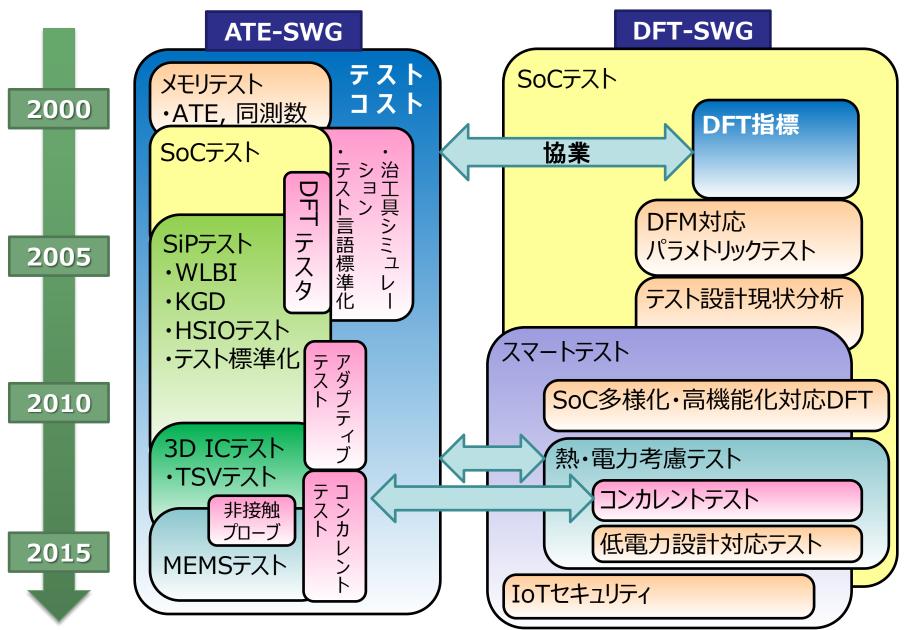
2015年度: IoTデバイスに対するセキュリティ関連テストについて

調查•検討

"System Integration" Focus Topicに属する活動

今後Mixed-signal/Analog/RF/Photonics/MEMSに対する信頼性確保が重要になる

2. WG2体制



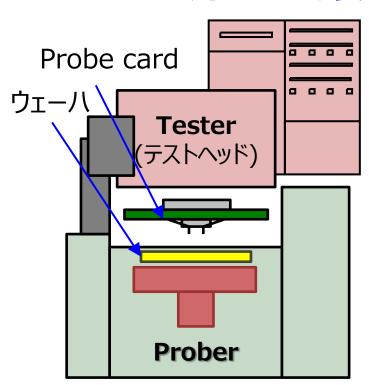
	ATE-SWG	DFT-SWG
委員	田村(ルネサス セミコンダクタ パッケージ&テスト ソリューションズ)サブリーダ 平山(ソシオネクスト) 武田(東芝)	安藏(東芝) WGリーダ 濱田(ソシオネクスト)サブリーダ 青木(ソニーLSIデザイン) 佐々木(ルネサスシステムデザイン) 佐藤(ローム)
特別委員 (SEAJ技術部会 検査専門委員会)	北川 (アドバンテスト) 市川 (アドバンテスト) 清水 (東京エレクトロン) 鈴木 (浜松ホトニクス) 薗田 (シバソク) 清藤 (日本マイクロニクス)	テスト装置メーカー からの知見を得る 目的で参加
特別委員(大学その他)	多田 (徳島文理大学) 佐藤 (TRL) 堀部 (エスティケイテクノロジー) 渡辺 (サイプレス・イノベイツ) 鈴木 (山一電機) 島田 (エンプラス半導体機器)	佐藤(九州工業大学) 畠山(群馬大学) 清水(サイプレス・イノベイツ)

全23名

3. WG2の活動実績

区分	活動内容	
国際活動	ITRS 2015	・ハンドラ、プローバ、ソケットの各テーブルを改訂 ・ロジックテーブル改訂に協力 ・コンカレントテストに関しDFTテーブル及び本文の修正・追記 ・Low powerセルテストに関し本文へ新規追加
	国際会議	・米Stanford(7月)、Atlanta(2月)の国際会議に参加。上 記の改訂に関して関係者とレビューを実施
日内注制	ATE-SWG	・今後のテスト技術の方向性とその価値に関する検討 ・テストコストに関する検討
国内活動	DFT-SWG	・MEMSの試験に関する調査・検討 ・セキュリティ関連デバイスのテストに関する調査・検討

テーブル	担当	改訂内容
プローバ	STRJ	- 450mmウエハ量産化時期(2020年)に対応 - フレームプローバテーブルの追加
ハンドラ	STRJ	- 各項目の色や数値を全般的に変更
ソケット	STRJ	- DRAMおよび SoC用ソケットの峡ピッチ化、高速化に対応
Logic	ITRS/STRJ	- モチーフデザイン変更(*)に対応(実施内容・時期の見直し)
DFT	STRJ	- コンカレントテストテーブルを定量化


(*) SoCモデルがフィーチャーフォンからスマートフォンモチーフへ

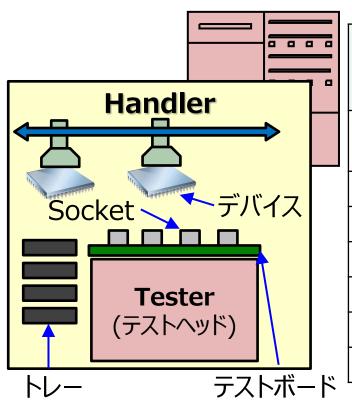
STRJが上記テーブルを担当し、改訂作業を主導的に行った

5. ATE-SWG活動: ITRS2015 テーブル改訂

▶ Proberに対する主な要求/対応/今後の課題

	200mm	300mm	450mm
対応年	2015-2019	2015-2019	2020~
ウェーハサイズ	6, 8inch	8, 12	12, 18
テストヘッド 重量(max)	1000kg	1000	1500
プローブカード サイズ(max)	580mm	580	725
XY精度	2.0um	2.0	2.0
Z精度	5.0um	5.0	5.0
チャック平坦度	7.5um	5.0	5.0
チャック耐荷重	60kg	450	500
温度範囲	-55∼ +300℃	-55~ +250	-55~ +250

・要求:広範囲な位置決め精度、多個取り数増加による平坦度/耐荷重、車載要求 による温度範囲、450mmウェーハ


・対応:アライメント精度向上、チャックのステージ強化、温度制御改善

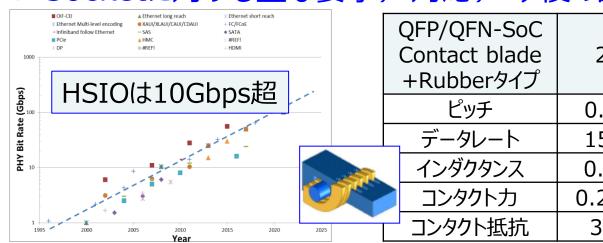
・課題:450mmウェーハで難易度up、プロービングシステム全体での最適化、プローブ カード治工具の大口径化、重量増加に伴う装置運用の安全性確保

5. ATE-SWG活動: ITRS2015 テーブル改訂

➤ Handlerに対する主な要求/対応/今後の課題

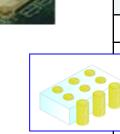
水平搬送 (Consumer SoC/ Automotive)	2015	2017	2019
テスト温度	-55~ +175℃	−55~ +190	−55~ +190
Index時間	0.3秒	0.3	0.25
処理能力	2∼30k/H	2~30k	2~30k
消費電力散逸	30W/DUT	40	40
パッケージサイズ	2.5x2.5mm	2.5x2.5	2x2
パッケージ厚さ	0.4-1.8mm	0.2-1.8	0.2-1.8
ピンピッチ	0.35mm	0.35	0.3

・要求:短Index時間、薄いパッケージのハンドリング、車載向け温度対応


・対応:ハンドリング方法やハンドラ内温度制御の最適化

・課題:温度制御のレスポンスや精度、アプリケーション毎に対応した最適化

5. ATE-SWG活動: ITRS2015 テーブル改訂



➤Socketに対する主な要求/対応/今後の課題

QFP/QFN-SoC Contact blade +Rubberタイプ		2015	2017	2019
	ピッチ	0.3mm	0.3	0.3
	データレート	15GT/s	20	40
	インダクタンス	0.15nH	0.15	0.1以下
	コンタクトカ	0.2-0.3N	0.2-0.3	0.2-0.3
	コンタクト抵抗	$30 \text{m}\Omega$	30	30

BGA-SoC Rubberタイプ		2015	2017	2019
	ピッチ	0.3mm	0.25	0.25
	データレート	56GT/s	56	56
	インダクタンス	0.15nH	0.1以下	0.1以下
	コンタクト力	0.15N	0.1	0.1
	コンタクト抵抗	$50 \mathrm{m}\Omega$	50	50

・要求:高速化、コンタクタの狭ピッチ化、低インダクタンス、低コンタクトカ

・対応:コンタクタの微細化、低インダクタンス化(導体長を短くする)

・課題:高速・高周波対応、コンタクタの耐久性

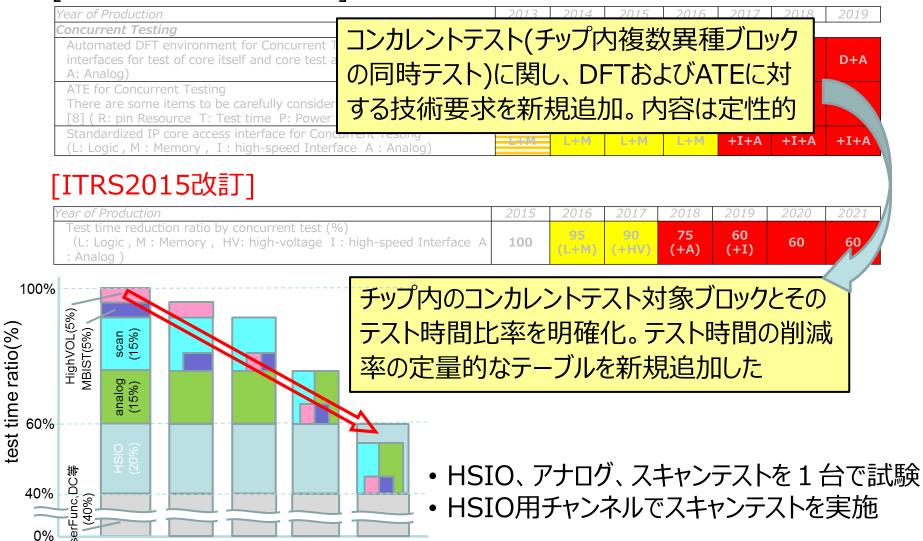
5. ATE-SWG活動:独自活動

> テスト技術の方向性

	1998年(STRJ発足)	現在	今後
主力製品	メモリ	SoC	SiP, 2.5D/3D IC, IoT
製品のキー技術	製造技術(前工程) 装置技術(前工程)	製品提案 設計技術	実装技術
国内各社の事業 形態	IDM	ファブレス <i>/</i> ファブライト化の進行	ファブレス <i>/</i> ファブライト
テストの主目的	製造へのフィードバック GO/NOGO判定	設計へのフィードバック 歩留まり向上	信頼性へのフィードバック 歩留まり向上 トレーサビリティ
注力されるテスト 技術	自社テスト工程のコスト 削減 同測テスト	テスト時間の短縮 テスト容易化	テストの標準化 アナログテスト容易化 テストデータ解析 付加価値の増大

ファブレス化によるスマートテスト技術への移行

5. ATE-SWG活動:独自活動


- ▶ テスト工程が生み出す付加価値について
 - セキュリティ、トレーサビリティの向上:セキュリティキーやIDの書込み
 - 歩留まりおよび精度の向上:トリミング技術
 - 不良メモリセルの救済:リダンダンシ技術
 - 品質向上、歩留まり向上、テスト最適化: ビッグデータの活用
 - ◆ビッグデータ活用に必要なこと
 - 大容量ネットワーク化
 - テストデータの即時性向上
 - データのセキュリティ確保
 - データ解析、データ応用技術者の育成
 - データ解析結果の妥当性検証

テスト工程は必要悪ではなく、ビッグデータ活用で さらに価値を生む工程に!

6. DFT-SWG活動: ITRS2015 テーブル改訂

[ITRS2013 DFTテーブル]

2016

2017

2018

2019

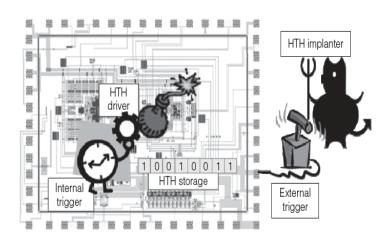
2015

6. DFT-SWG活動:独自活動(背景)

- > セキュリティ関連デバイスのテスト
 - IoTデバイスの普及に伴いセキュリティ対策が重要になってきている
 - 一般にDFTはチップ内を観測する技術であり、セキュリティホールになり得る

セキュリティデバイスのテストに関する調査を実施

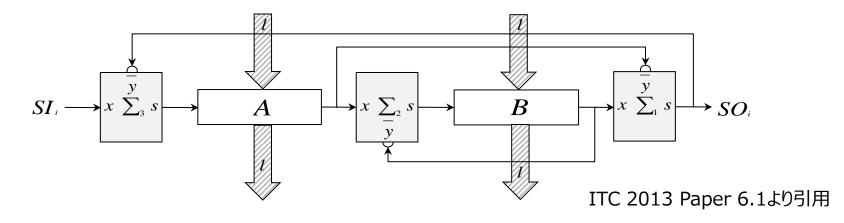
- ➤ IoTにおけるセキュリティに対する脅威
 - セキュリティコードの読み出し手段
 - Hardware Trojan
 - 設計者による挿入
 - 実装技術者による挿入
 - 製造者による挿入
 - 偽造IC(*)
 - サイドチャネル攻撃
 - スキャンチェインによる内部情報の読み出し



(*) 一般には正規品と同等機能をもつ安価な粗悪IC、ここでは悪意ある機能が追加されたICを含む

6. DFT-SWG活動:独自活動(攻撃への対策)

- ▶ セキュリティコード読出し等への対策
 - PUF (Physical Unclonable Function) による暗号鍵の保護等
 - LSIの個体毎の物理的差異を利用して個体の識別情報を作る
- ➤ Hardware Trojanへの対策
 - Hardware Trojanとは?
 - 設計で仕込まれた悪意のある回路
 - 何かをトリガに故障誘発/情報リーク
 - サードパーティーIPに仕込まれる例も



- サードパーティIPに仕込まれた場合の対策(ITC 2015より)
 - 冗長ベース手法(異なるベンダのIPを併用)
 - ナレッジベース手法 (既存の信頼性の高い回路のみ利用)
 - ●回路/信号ベース手法 (回路や信号を分析)
 - ソフトウエアベース手法(ソフトウエアの特性分析手法を適用)

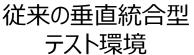
6. DFT-SWG活動:独自活動(攻撃への対策)

STRI

- > スキャンチェインによる読み出し
 - ■テストモードで内部の値を外部から読み出す
- > 対策例
 - ■テストモード切り替えに鍵を掛ける
 - ●状態遷移やeFUSEを利用
 - ■テストモードを無効にする
 - ●スクライブ領域配線やモード信号のボンディング時固定
 - Differential Scan等によりデータを秘匿化する

ITRS 2015年改訂に参加。最後のITRSの改訂に、テスト・DFTの面で貢献した

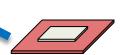
ATE-SWG


- ITRS table(ハンドラ、プローバ、ソケット)および本文改訂
- 今後のテスト技術の方向性とその価値に関する検討

DFT-SWG

- ITRS table改訂(コンカレントテスト、Low powerセルテスト)および本文追記
- MEMSテスト及びセキュリティ関連テストの調査・検討

8. 未来への展望



スマートテスト

LSI設計

スマートテスト:

ICT基盤上でのテストビッグデータの有効活用とサプライチェーン全体の最適化を行うことで、 半導体の価値を最大化するコンセプト

信頼性 トレーサビリティ セキュリティ 設計インテント 歩留り

以上