65nmを実現するための新計測技術

Metrology WG (WG11)

- •三菱電機 池野昌彦
- ・産総研次世代半導体研究センター 金山敏彦

WG11メンバー

役職	氏名	会社名
主査	長田俊彦	富士通
副主査	北島洋	NEC
委員	杉本有俊	日立製作所
11	中尾一郎	松下電器
//	今西貞之	松下電器
//	池野昌彦	三菱電機
//	森山徳生	沖電気
//	秋月誠	三洋電機
//	国安仁	ソニー
11	三好元介	東芝
//	松川昌樹	ローム
//	水野文夫	明星大学
//	市川昌和	ATP/JRCAT
//	金山敏彦	次世代半導体研究センター
11	高橋正則	SEAJ(SII)
11	堺沢秀行	SEAJ(東京精密)

Metrology Roadmap 2001 Update

Europe	Alain Deleporte (ST) Alec Reader (Philips Analytical)	4/01
	Vincent Vachellerie (ST)	4/01
	Mauro Vascone (ST)	
Japan	Fumio Mizuno (MEISEI University	/)
	Masahiko Ikeno (NEW)	
Korea		
Taiwan	Henry Ma (EPISIL)	
US	Steve Knight (NIST)	
	Bob Scace (Klaros Corporation)	
	Jack Martinez (NIST)	
	Alain Diebold (Int. SEMATECH)	

SCOPE

- Microscopy
- Control of Statistical Processes
- Lithography Metrology
- FEP Metrology
- Interconnect Metrology
- Materials and Contamination Metrology
- Integrated Metrology
- Standards and Reference Materials

GAPS in FAB Ready Metrology

- 3D CD for Mask and Wafer for lines and contact/via and long term capability for CD
- Optical and Electrical Metrology that controls high k plus interface
- Void detection in copper Lines
- Killer Pores in low k
- Sidewall barrier layer control below seed Cu

Difficult Challenges before 65 nm / 2007

- Factory level and company-wide metrology integration
- Impurity detection (especially particles) at levels of interest for starting materials & reduced edge exclusion for metrology tools.
- Control of high-aspect ratio technologies such as Damascene challenges all metrology methods. <u>Key</u> requirements are void detection in copper lines and pore size distribution in patterned low k.
- Measurement of complex material stacks and interfacial properties including physical and electrical properties.
- <u>Measurement test structures and reference materials.</u>

Difficult Challenges after 65 nm / 2007

- •Nondestructive, production worthy wafer and mask level microscopy for critical dimension measurement for 3-D structures, overlay, defect detection, and analysis.
- •Standard electrical test methods for reliability of new materials, such as ultra-thin gate and capacitor dielectric materials, are not available.
- •Statistical limits of sub-65 nm process control.
- •3D dopant profiling.

•<u>Determination of manufacturing Metrology when device and</u> interconnect technology remain undefined.

GAPS in Litho Metrology

Technology Node	130 nm	90nm	65 nm	45 nm	32 nm	22 nm	Driver	
Lithography Metrology								
Wafer Gate CD nm post-etch contol	6.5	3.7	2.5	1.8	1.3	0.9	MPU	
Wafer CD Tool 3σ Precision P/T=0.2	1 2	0.75	0.5	0.26	0.26	0.19	MDU	
Isolated Lines	1.5	0.75	0.5	0.30	0.20	0.10	WIFU	
Line Edge Roughness (nm)	4.5	2.7	1.8	1.3	0.9	0.65	MPU	
Overlay Control (nm) (mean +3σ)	45	31	26	18	13	9	MPU	
Overlay Metrology Precision (nm) P/T=0.1	4.5	3.1	2.6	1.8	1.3	0.9	MPU	

- Precision of CD-SEM
- Proof of 3D CD for Tilt Beam CD-SEM
- Commercialization of 3D software for top-down CD-SEM
- Depth of Field Issues for CD-SEM
- Reference Materials for 65 nm node and below
- Standard method for Precision of Discrete CD Library
- Probe Tip Technology for CD-AFM

Changes to Lithography Metrology

- Accelerated MPU Gate Length dilutes
 advances in CD Measurement
 - Will 15% Process 3σ be adopted??
- Addition of Line Edge Roughness Metrics
- Overlay may face difficulties associated with mixing exposure tools
 - e.g., 2 different 157 nm exposure tools for via & metal trench (or 157 nm for lines & Electron Projection for Via)

Technology Node	130 nm	90nm	65 nm	45 nm	32 nm	22 nm	Driver		
Lithography Metrology									
Wafer Gate CD nm post-etch contol	6.5	3.7	2.5	1.8	1.3	0.9	MPU		
Wafer CD Tool 3σ Precision P/T=0.2 Isolated Lines	1.3	0.75	0.5	0.36	0.26	0.18	MPU		
Line Edge Roughness (nm)	4.5	2.7	1.8	1.3	0.9	0.65	MPU		
Line Edge Roughness Precision 3σ (nm)	0.9	0.54	0.36	0.26	0.18	0.13	MPU		

Thanks to ITRS Litho TWG - Harry Levinson / Mauro Vasconi

Why are CD Measurement Requirements RED?

- There is no universal metrology solution for all CD measurements.
 - e.g., Scatterometry meets Focus-Exposure precision needs to (70 nm node?) for resist lines but not for contacts (yet).
 - Can Scatterometry measure LER ?
- 3D info needed for undercut gate, contact, and other structures.
- Precision includes tool matching and near + long term measurement variation.

Gaps in FEP Metrology

Technology Node	130 nm	90nm	65 nm	45 nm	32 nm	22 nm	Driver
Front End Processes Metrology							
Logic Dielectric Thick Precision 3σ (nm)	0.005	0.004	0.0024	0.0024	0.0016	0.0016	MPU
Metrology for Ultra-Shallow Junctions at Channel Xj (nm)	26	14.8	10	7.2	5.2	3.6	MPU

• Physical Metrology for high k gate stack

- Optical Models for next High k (beyond ZrO2 and HfO2)
- Commercial availability of high k optical model in software
- Interfacial control for interface between high k and silicon

• Electrical Metrology for high k gate stack

- Application of Non-contact C-V to next High k (beyond ZrO2 and HfO2)
- Comparison of non-contact electrical to C-V
- USJ Metrology
- Ultra Shallow Junction Metrology (USJ)
 - Dose/Junction Control
 - 2D Dopant Profiling with spatial resolution
- Metrology for post CMOS
 - SOI; SiGe; Vertical Transistors
 International Technology Roadmap for Semiconductors Work-In-Progress, Don't Publish. ©JEITA, All Rights Reserved.

- Optical and Electrical measurement of High κ can be done for development but needs to be robust for manufacturing
- Metrology for interface below High κ needs R&D
- USJ Metrology needs development for < 65 nm
- FERAM needs fatigue testing for 10¹⁶ read/write cycles

Gaps in Interconnect Metrology

Technology Node	130 nm	90nm	65 nm	45 nm	32 nm	22 nm	Driver		
Interconnect Metrology									
Barrier layer thick (nm) process range (±3 ϕ Precision 1 σ (nm)	18 10% 0.06	11 10% 0.04	8 10% 0.03	7 10% 0.02	5 10% 0.017	4 10% 0.013	MPU		
Void Size for 1% Voiding in Cu Lines	32.5	22.5	16.25	11.25	8	5.5	MPU		
Detection of Killer Pores at (nm) size	6.5	4.5	3.25	2.25	1.6	1.1	MPU		

- VOID Detection in Copper lines
- Killer Pore Detection in Low κ
- Barrier / Seed Cu on sidewalls
- Control of each new Low κ

Interconnect Metrology

- Random isolated void detection (size of 25% of line width) at < 1% in copper lines may not be measurable in-line
- Max Low κ Pore size of 5% of line width
- Metrology for electrochemical deposition will be included in Metrology Roadmap

Materials Characterization Enables Process and Metrology Development

Short term: New Aberration Corrected Lens for STEM/TEM Long Term: Atom Probe

High Angle - Annular Dark Field STEM

2001 Grand Challenges

- Development of Metrology tools in time.
- Rapid non-destructive metrology for CD, overlay, defect detection and line edge roughness that meets ITRS timing and technology requirements.

