

ITRS 2004 Updateの概要

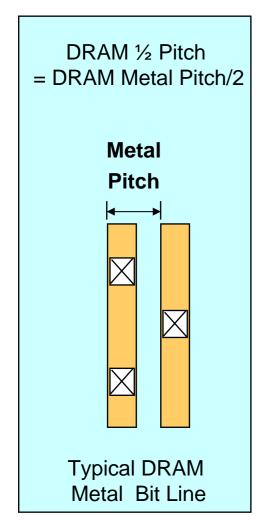
STRJ 副委員長 (株)東芝 石内秀美

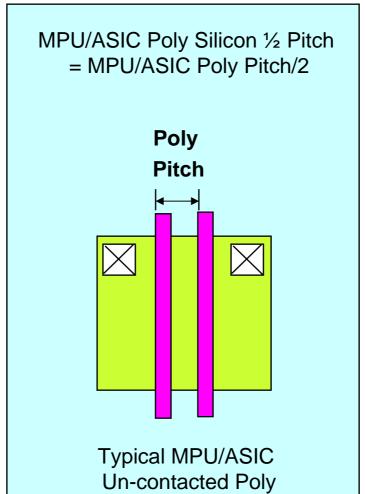
内容

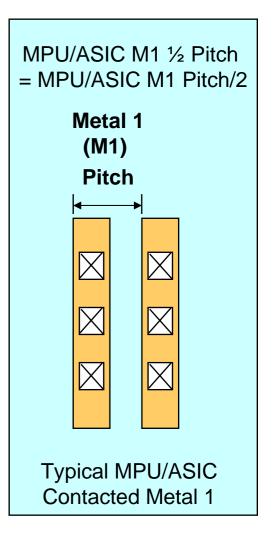
- ●概要
- ●設計
- ●リソグラフィ
- プロセスインテグレーション(PIDS)
- 新探究(エマージング)デバイス(ERD)
- フロントエンドプロセス (FEP)
- ●配線
- ●実装
- ●まとめ

ITRSの歴史

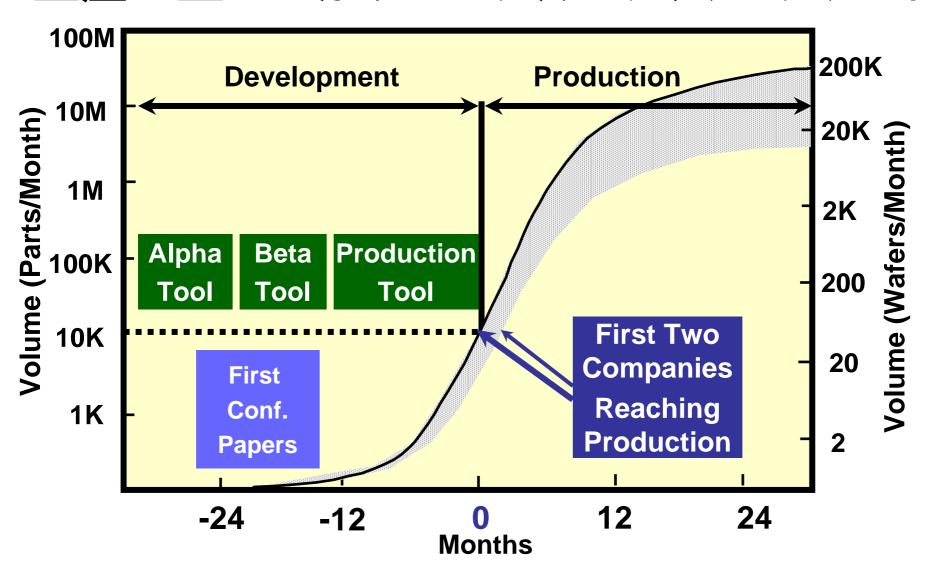
- ・ 米国でロードマップの編集(1991-1997)
 - 1991 Micro Tech 2000 Workshop Report (米)
 - 1992 NTRS (National Technology Roadmap of Semiconductors, 米)
 - 1994 NTRS (米)
 - 1997 NTRS (米)
- ・ ロードマップ国際化の議論(1998)
 - 1998 ITRS Update
- ・ 米・日・欧・韓・台の5極でロードマップを編集(1999-)
 - 1999 ITRS
 - 2000 ITRS Update (改訂版)
 - 2001 ITRS
 - 2002 ITRS Update (改訂版)
 - 2003 ITRS
 - 2004 ITRS Update (改訂版)


2004 ITRS Updateの概要




- ・ すべての章を改訂
- ・ 改訂の規模
 - 2003年版に含まれる219の表のうち128を改訂
 - 新たに4つの表を追加
 - 12の図を改訂
- 2003年版の表に2011年、2014年、2017年を追記
- ERM(新探究材料)の節を追加しました。
- 2004年ITRSの会議
 - イタリアのストレーザ(4月19日、20日)
 - 米国のサンフランシスコ(7月12日、13日)
 - 東京(11月30日、12月1日)

ハーフピッチの定義 [DRAM ハーフピッチが 2003 ITRS "node"を決定する]



生産の立ち上がりのモデルとテクノロジノード

STRJ WS: March 3, 2005, ITRS 2004 Update の概要

テクノロジノードは3年サイクル

Source: 2003 ITRS - Exec. Summary Table C

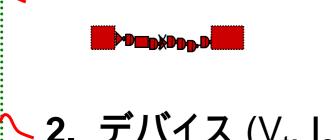
生産年	2002 [Actual]	<u>2003</u>	2004	<u>2006</u>	2007	<u>2009</u>	2010	<u>2012</u>	2013	<u>2015</u>	<u>2016</u>	<u>2018</u>
テクノロジノード (nm)	hp130		hp90		hp65		hp45		hp32	2	hp22	

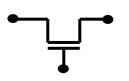
3年サイクル

技術ノードと主要な寸法

(ITRS 2004 Updateでは<u>下線部の数字</u>を追加)

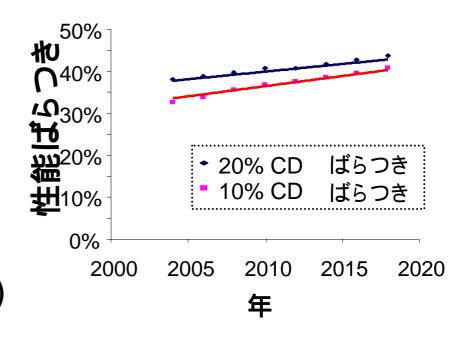
生産開始年	2003	2004	2005	2006	2007	2008	2009
テクノロジーノード		hp90			hp65		
DRAM ハーフピッチ (nm)	100	90	80	70	65	57	50
MPU/ASIC Metal 1 (M1) ハーフ ピッチ (nm)	120	107	95	85	76	67	60
MPU/ASIC Poly Si ハーフピッチ (nm)	107	90	80	70	65	57	50
M P U リソグラフィー後のゲー ト長 (n m)	65	53	45	40	35	32	28
M P U 物理的ゲート長 (nm)	45	37	32	28	25	22	20


生産開始年	2010	2011	2012	2013	2014	2015	2016	2017	2018
テクノロジーノード	hp45			hp32			hp22		
DRAM ハーフピッチ (nm)	45	<u>40</u>	35	32	<u>28</u>	25	22	<u>20</u>	18
MPU/ASIC (M1ハーフピッチ (nm)	54	48	42	38	<u>34</u>	30	27	<u>24</u>	21
MPU/ASICPoly Si ハーフピッチ (nm)	45	40	35	32	28	25	22	<u>20</u>	18
MPU リソグラフィー後のゲー ト長 (nm)	25	22	20	18	<u>16</u>	14	13	<u>11</u>	10
M P U 物理的ゲート長 (n m)	18	<u>16</u>	14	13	<u>11</u>	10	9	<u>8</u>	7


設計 - DFM(Design for Manufacturing)

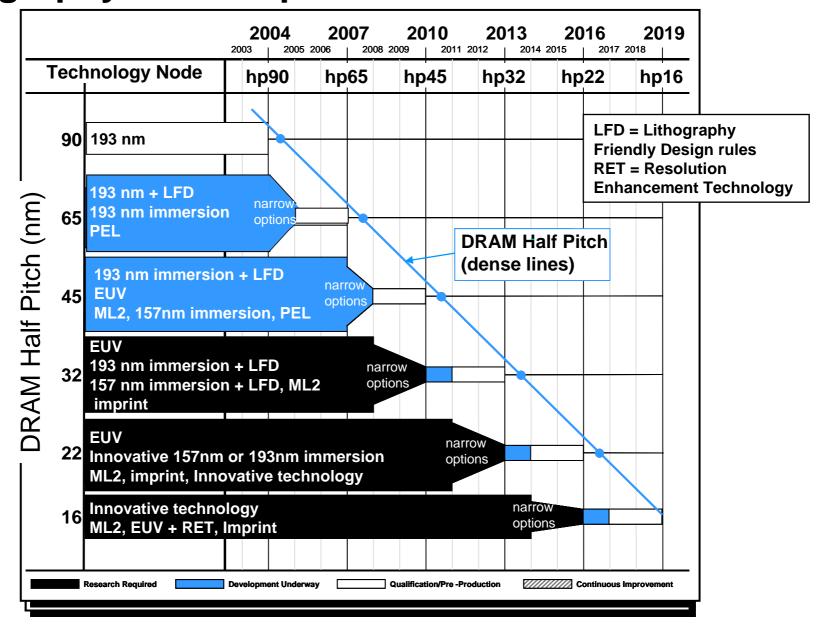
----→ ばらつき考慮設計 DFM challenges

<u>回路/chip</u> (スピード、電力)



<u>^</u> 2. <u>デバイス</u> (∨_t, l_{off})

3. <u>物理レベル (La, NA、)</u>


リソグラフィ

- リソグラフィーツール
 - 193nm波長のドライまたは液浸リソグラフィー技術が65nm,45nmで使われ、32nm、22nmでも使用される可能性
 - EUVリソフラフィーは45nm、32nm, 22nmの有力候補技術
- CD制御 (total CD control)
 - 3σ <4nm にCD を制御する解決策がないことが判明。
 - レジストゲート長は2005年に見直し。
- 液浸リソの実用化には多くの課題
- 色づけとフットノート他を改訂
 - リソの全般的要求の表77a and 77bの定義
 - マスクの表
 - レジストの表
- 更なる議論が必要(2005改訂に反映)
 - LWR/LER の定義と値をPIDS, FEP and Metrologyからもらう
 - Advanced Process Control への要求事項

Lithography Roadmap with Potential Solutions

フロントエンドプロセス

- ゲートのCD(寸法)制御について
 - ITRSと現実との乖離を注記
 - ITRSのばらつき限界を達成できていない。
 - 2005年版の表の改訂を提案
- SOIウェーハの認定/少量量産時期を2006年から2004年へ
- 450mmウェーハの導入時期を強調
 - 2011年、ないし2015年。450mmウェーハ導入時期についての合意は未。
 - ウェーハメーカーの開発は2011年の導入には間に合わないと注記
 - 450mmウェーハ導入時期についての合意はまだとれていない。
 - 2005年にも、標準化の議論を始める必要あり
- チャンネル部のキャリア移動度増加技術は実用化
 - 先端製品では、Siに歪を加える技術の利用が始まる。
- ゲートスタックのリーク電流の仕様を改訂
 - 100°Cでの電流値を記入

PIDS (Process Integration Devices, and Structures)

- 2004年の改訂: 2003年版の小改訂と誤り修正
 - 2003年版の表には記載されていなかった2011年、2014年、 2017年の数値を追加
 - 上記の各数値は前後の年の中間に近い値になっている。
 - DRAMの微細化トレンドには変化なし。
 - 2004年にハーフピッチ90nmが実現
- 2005年版にむけての準備を開始
 - 多くの課題が想定される。

Emerging Research Devices (新探究デバイス) 章の構成の変更 (2004/2005)

Emerging Research Devices (新探究デバイス)

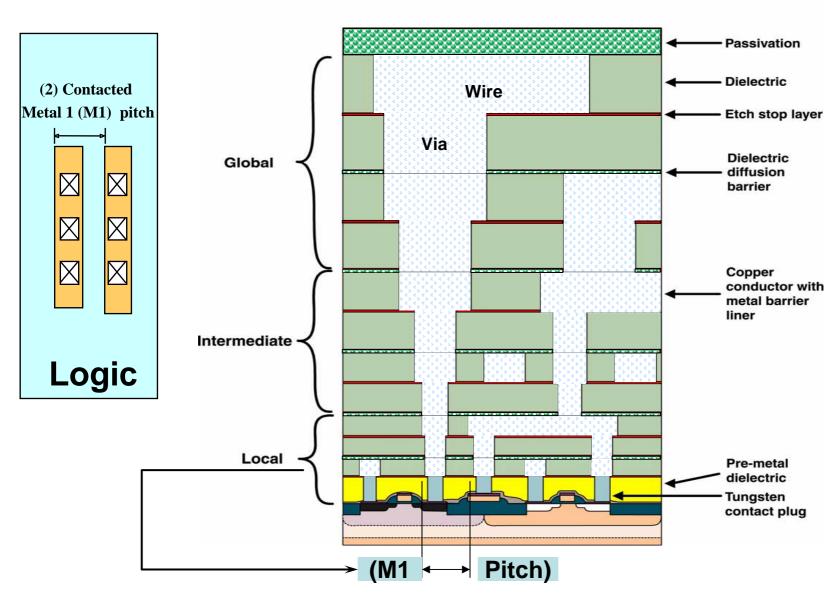
Emerging Materials (新探究材料) Emerging
Logic and Memory
Devices
新探究ロジックとメモリ)

Emerging Architectures (新探究アーキ テクチャー)

2004年改訂 でERD に 追加 Non-classical CMOS (ノンクラシカル CMOS)

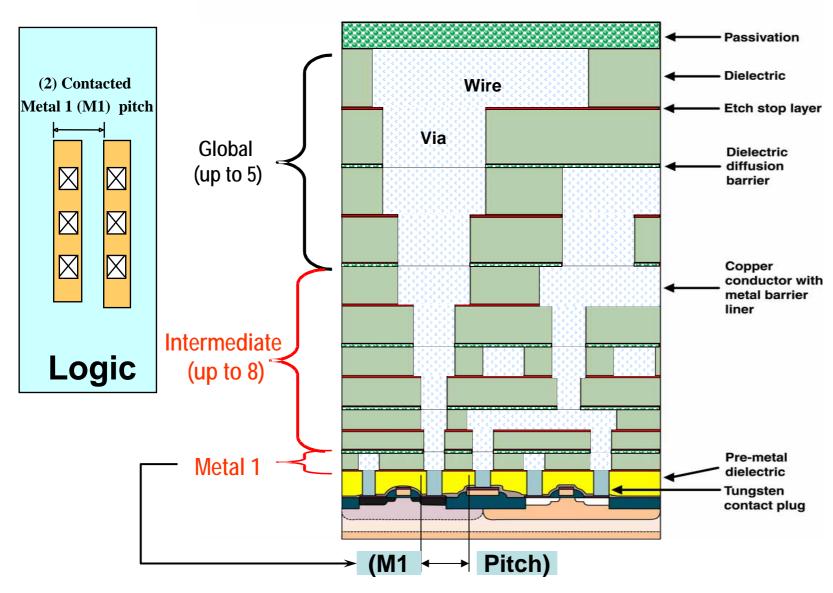
2005年版では PIDS/FEPへ

配線技術

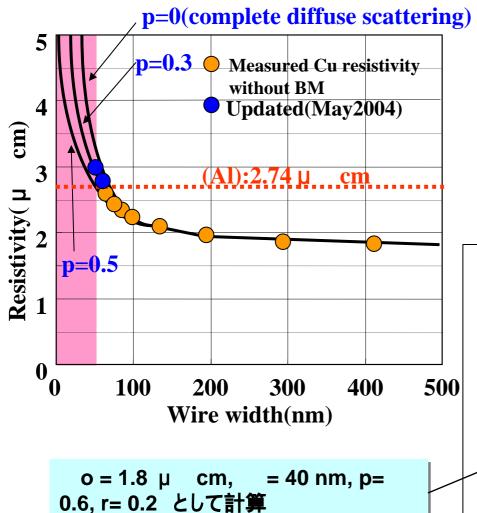


ロジックデバイス

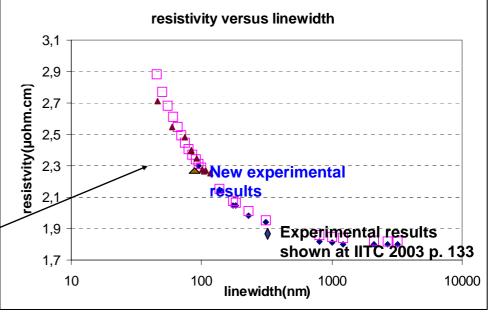
- 銅の配線抵抗は散乱効果のため増大
 - 第一メタル、インターミディエット、グローバル配線の抵抗を計算 する方法を追加した。
 - RC遅延の数値を改訂した。
- 第一メタルのデザインルールについて
 - コンタクトなしのハーフピッチ、コンタクト付きのハーフピッチについての混乱、MPUにおけるテクノロジーノードの誤用を解消
 - 最近の文献によると、第一メタルの微細化が加速(2005年版の 検討項目)
 - 高性能(high performance)チップのための別の表が必要 (2005年版の検討項目)
- Low k 技術への要求と kの値(材料の値、実効値とも)は
 2003年版と同じ。
 - 比誘電率(k値)の前倒しをしなかったのは、10年来初めて
 - 技術的な困難度を示す色を小修正


Typical Chip Cross Section

Work in Progress - Do not publish

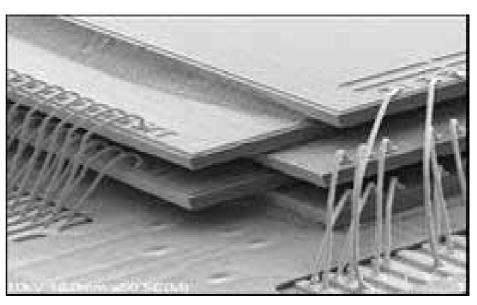


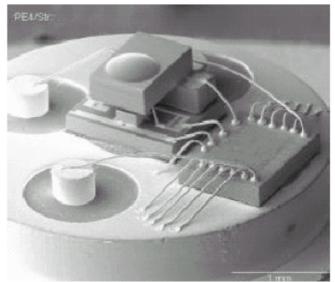
Typical Chip Cross Section



電子散乱効果による銅(Cu)配線の抵抗増大

wire width(cm)	ire width(cm) o(u cm)		(om)		Measured			
wire width(Cili)	o(µ	cm)	(cm)	P=0	P=0.2	P=0.3	P=0.5	data
5.00E-05	1.9	0E+00	3.40E-06	2.05	2.03	2.02	2.00	2.00E+00
2.00E-05	1.9	0E+00	3.40E-06	2.26	2.21	2.19	2.14	2.10E+00
1.40E-05	1.9	0E+00	3.40E-06	2.42	2.35	2.32	2.25	2.20E+00
1.17E-05	1.9	0E+00	3.40E-06	2.52	2.44	2.40	2.31	2.30E+00
1.00E-05	1.9	0E+00	3.40E-06	2.63	2.53	2.48	2.38	2.40E+00
8.50E-06	1.9	0E+00	3.40E-06	2.76	2.64	2.58	2.47	2.50E+00
7.50E-06	1.9	0E+00	3.40E-06	2.87	2.74	2.68	2.55	2.70E+00
6.50E-06	1.9	0E+00	3.40E-06	3.02	2.87	2.79	2.65	2.80E+00
5.50E-06	1.9	0E+00	3.40E-06	3.22	3.05	2.96	2.78	3.00E+00
5.00E-06	1.9	0E+00	3.40E-06	3.35	3.16	3.06	2.87	Non
3.90E-06	1.9	0E+00	3.40E-06	3.76	3.52	3.39	3.14	Non
3.60E-06	1.9	0E+00	3.40E-06	3.92	3.65	3.52	3.25	Non
2.80E-06	1.9	0E+00	3.40E-06	4.50	4.15	3.98	3.63	Non
2.40E-06	1.9	0E+00	3.40E-06	4.93	4.52	4.32	3.92	Non
2.00E-06	1.9	0E+00	3.40E-06	5.53	5.05	4.81	4.32	Non


アセンブリとパッケージ


コンシューマ / Mixed Signal市場への対応

- ・システム・イン・パッケージ (SiP)
- ・3次元パッケージ
- •ウェハレベルパッケージ
- •薄チップ化

新規デバイスへの対応

- •MEMS
- •光エレクトロニクス
- •バイオチップ

まとめ --- 2004 ITRS Updateのポイント

- 193nm波長のドライまたは液浸リソグラフィー技術が 65nm,45nmで使われ、32nm、22nmでも使用される可能性
- EUVリソフラフィーは45nm、32nm, 22nmの有力候補技術
- CD(重要寸法: Critical Dimension)制御とLER(Line Edge Roughness)の問題がクローズ・アップ
- 450mmウェーハの導入は2011-2015年だが、コンセンサスは未。2005年にも、標準化の議論を始める必要あり。
- ・ 先端製品にはSiに歪を加える技術の利用が始まる。
- 配線技術についてはLow k 技術への要求と k の値(材料の値、実効値とも)は2003年版と同じ。kの値の変更をしなかったのは、10年来初めて。
- ICの機能を十分に引き出すため、パッケージ技術に注目。

参考文献: 関連webサイトのURL

- ITRSの公式ホームページ
 - http://public.itrs.net/
 - ITRS 2004 Updateはじめ、ITRSの最新情報
- JEITAのロードマップのホームページ
 - http://strj-jeita.elisasp.net/strj/index.htm
 - ITRS 2003の日本語訳
 - その他 STRJ(半導体技術ロードマップ専門委員会) の活動情報など