

1

低電力SoCのロードマップ

~ Design for Manufacturing検討の第1步~

設計タスクフォース サブリーダ: 浅田 善己 (STARC)

Work in Progress - Do not publish

STRJ WS: March 3, 2005, 設計TF

設計タスクフォースの委員構成

邦男(リーダ) 内山 浅田 善己(サブリーダ) 石橋 孝一郎 (国際対応) 岡野 伸洋 古野 慎治 朝重 浩喜 金谷 賢仁 児玉 裕秋 石垣 元治 塩田 哲義 抜山 知二 **吝藤** 利忠

Work in Progress - Do not publish

日立製作所 **STARC** ルネサステクノロジ シャープ 沖電気工業 松下電器産業 三洋電機 ソニー ローム 富士通研究所 NECエレクトロニクス 東芝

DFM (Design for Manufacturing) STRD の検討に向けて

Design for Manufacturing, Design for YieldがLSI設計に おいて重要に

次回の半導体ロードマップの大改訂において、Design章 にDFMに関する記述を追加する予定 (ただし、現時点では、国際半導体ロードマップの活動に おいても、十分な検討は進んでいない)

DFMの諸課題のうち、ばらつきのLSI特性への影響はどの程度であるかが設計TFメンバーの関心事

設計TFの低電力SoCモデルにてばらつきの影響を評価

Work in Progress - Do not publish

設計TFの低電力SoCの検討モデル 0.18µm世代の携帯電話向けアプリケーションプロセサの例 このモデルをベースに集積度,特性のロードマップを作成

Work in Progress - Do not publish

STRJ WS: March 3, 2005, 設計TF

低電力SoC設計モデルの初期値^{STRD} (@130nm)

1

39.7Mtrs. / 8mm	<i>論理部</i> 11.5Mtrs.	<i>メモリ部</i> 28.2Mtrs.
<i>高周波領域</i> F _h : 180MHz (LSTP) 330MHz (LOP)	4.7Mtrs. CPU, FPU, DSP, Media Proc. HW accelerator, Config. Arrays,	8.6Mtrs. Cache, XY memory, Work memory,
<i>低周波領域</i> F _l = F _h / 4	6.8Mtrs. Memory cnt., DMAC, Graphic eng., Peripheral module, (Ser., Par., Comm.,.)	19.6Mtrs. 2 nd -Cache, 2 nd - work memory, Global memory, Temp. buffer,

Work in Progress - Do not publish

STRJ WS: March 3, 2005, 設計TF

STRJ WS: March 3, 2005, 設計TF

ばらつきの取り扱い

ばらつきの定量情報 公開情報は少ない 検討の最初のステップとして、簡単なばらつき のモデルをITRSのテーブルから設定

■ばらつきの統計的性質 □隣接デバイスどうしで相関のある成分(システム成分) □独立にばらつく成分(ランダム成分) ランダム成分を考慮 ガウス分布を仮定 ■ばらつきの範囲 □チップ内ばらつき、ロット内ばらつき □当該プロセス世代全体のばらつき(オーバーオール) オーバーオールで考える

Work in Progress - Do not publish

STRJ WS: March 3, 2005, 設計TF

STRJ WS: March 3, 2005, 最信打F

MOSFETのVth変動 (Lg変動に起因) りードーピングの単純な構造のMOSFETに関する式^[2] (Haloや Retrograde Channelなどの短チャネル効果を抑制する 技術の適用無し)

$$\Delta V_{th}(L_g) = 8(m-1)\sqrt{\varphi_{bi}(\varphi_{bi} + V_{ds})}e^{-\pi L_g/2mW_{dm}^0}$$

$$m = 1 + \frac{C_{dm}}{C_{ox}} = 1 + \frac{3T_{ox}}{W_{dm}^0}$$
$$W_{dm}^0 = \sqrt{\frac{4\varepsilon_{si}kT\ln(N_A/n_i)}{q^2N_A}}$$

MOSFETのVth変動 (Lg変動に起因) ^(ID) 「VthのLgによる変動の計算結果(単純な構造を前提)」と 「学会の発表データ(実測)」を比較

STRJ WS: March 3, 2005, 設計TF

MOSFET 単位ゲート幅あたりのON電流(I_{on}) ~ PIDSのモデル

$$I_{drain_ideal} = v_{sat} \frac{\mathcal{E}_{SiO_2}}{t_{OX_gate_inv}} (V_{dd} - V_{th}) \frac{(V_{dd} - V_{th})}{(V_{dd} - V_{th} + 2L_g v_{sat} / \mu_{eff})}$$
$$I_{ON} = \frac{I_{drain_ideal}}{1 + R_{sd} I_{drain_ideal} / (V_{dd} - V_{th})}$$

L_g, t_{ox_gate_inv}, V_{th}について、ガウス分布のばらつきを 仮定して、モンテカルロ計算にて、I_{ON}のばらつきを計算

Work in Progress - Do not publish

STRJ WS: March 3, 2005, 設計TF

MOSFET(LOP) Ionの推移 Ionのばらつきは増大してゆく傾向 (Worst側の電流の増加が少ない)

STRJ WS: March 3, 2005, 設計TF

SRAMセルサイズの見積り(2) ■ LOPトランジスタのパラメータで、 「5s条件でIonがばらついた場合のセルサイズ」 「M1 pitchで理想的に縮小した場合のセルサイズ」 を比較 ■ 2010年付近で、理想的に縮小した場合に対し1.9倍程度の面積 が必要 @RT, Vdd=Typ.

MOSFET(LOP) リーク電流のRM ゲート幅1µmあたりのNMOS-FETのリーク電流

Work in Progress - Do not publish

STRJ WS: March 3, 2005, 設計TF 21

SoCの諸特性の計算モデル ■動作速度の計算モデル □27 , Typ. **の**CV/I の推移を基準に計算 (高温におけるIonの変化、ばらつきの動作周波数へ の影響のモデルに課題がある。) ■AC電力の計算モデル □昨年度と同じ計算モデル^[8] ■リーク電力の計算モデル □単体MOSFET 論理ゲート、メモリセルのリーク電流 昨年度発表[8]と同じ計算モデル □上記に、SoC搭載論理ゲート数とメモリビット数を乗算 □今年度は、リーク電流のばらつきと温度特性を考慮

 消費電力の見積り(LOPモデル)
 2003年版のロードマップに対して、ばらつきと温度条件を加味した リーク電流の変化を検討(全てのTr.に対し+3sは極端な設定)
 2010年時点で、

□全電力は、昨年の検討に対して9.1倍

□リークは、昨年度の検討に対して61倍で、全電力の90%に

まとめ

- ばらつきや温度変化のSoC特性への影響評価を実施
 SoC消費電力への影響 2010年で全電力が9.1倍(Max.)
 SRAMセルサイズへの影響 2010年でサイズ1.9倍
- リーク電力制御の設計とともに、ばらつきや温度変化に 対応した設計が必須になる
- ■今後の課題
 - □今回のモデルは簡単なモデル ばらつきのモデルの改善、特性計算モデルの改善 「ポリ電極のLER」や「配線のばらつき」等のばらつき要因の 検討
 - □半導体ロードマップの改訂作業の中で、国際的なDFM検討の 進め方との整合性を図る

- 1. International Technology Roadmap for Semiconductors 2003
- 2. Y. Taur et al., "Fundamentals of Modern VLSI Devices", Cambridge University Press
- 3. A. Asenov et al., "Simulation of Intrinsic Parameter Fluctuations in Decananometer and Nanometer-Scale MOSFETs", IEEE Trans. ED,pp.1837-1852, Vol.50, No.9, Sep. 2003
- 4. H. Wong et al., "Nanoscale CMOS", Proceedings of the IEEE, pp537-570, Vol.,87, No. 4, Apr. 1999
- 5. T. Mizuno et al., "Experimental Study of Threshold Voltage Fluctuation Due to Statistical Variation Channel Dopant Number in MOSFET's", IEEE Trans. ED, pp.2216-2221, Vol. 41, No. 11, Nov. 1994
- 6. International Technology Roadmap for Semiconductors 1999
- 7. M. Aoki et al., "Design Guide and Process Quality Improvement For Treatment of Device Variations in an LSI Chip", Proc. 2004 ICMTS, Vol. 17, Mar. 2004
- 8. STRJ報告書 2003年度版, JEITA