

1

STRJ-WG4(配線)報告

微細Cu/Low-k配線の課題

上野 和良 (NECエレクトロニクス) 辻村 学 (荏原製作所)

Work in Progress - Do not publish

STRJ WS: March 3, 2005, WG4

1. はじめに

- ・配線技術の現状
- ・WG4(配線WG)の活動概要
- 2. ITRS配線ロードマップ2003年版改訂の復習
- 3. ITRS2004アップデート
 - ・<u>電子散乱効果によるCu比抵抗上昇</u>
 - ·Low-k技術の進展を反映したk値の技術的な困難度見直し
 - ・動作周波数見直しに伴う電流密度のアップデート
 - ・DRAMのコンタクトおよびビア比抵抗の見直し
- 4. Cu/Low-k配線の課題
 - ・<u>Cu/Low-k配線の機械的強度解析</u>

5. まとめと2005年度への課題

1. はじめに

配線技術の現状

配線断面積の縮小と動作周波数の増加

配線遅延の増加

電流密度上昇に伴う信頼性劣化 (EM)

消費電力の増加

シグナルインテグリティー問題 など

対策として 新材料を導入

180nm世代からCu、130nm世代からLow-k

しかし、45nm世代以降に向けて、 材料物性限界の顕在化や技術障壁が増大

- ・電子散乱による比抵抗上昇
- ・ポーラスLow-k膜の機械的強度低下に伴う
 - インテグレーションや信頼性問題
- ・CuのEM限界 など

STRJ-WG4の活動概要

論理的根拠に基いた 合理的かつ現実的な配線技術ロードマップを目指す

国際ロードマップ ITRS作成とリンクした活動 <u>· 2003</u>年度(昨年度)

"論理的根拠に基いた
 合理的かつ現実的な配線技術ロードマップ"
 k値、配線層数、J_{max}などITRS2003に反映

<u>・2004年度</u> 2003年版のアップデート Cuの比抵抗上昇などITRS2003を改訂

STRJ独自の活動

・Low-k膜の機械的強度劣化の検討など

5

WG4(配線WG)構成

6

2004年度の活動経緯

2. ITRS配線ロードマップ2003年版改訂の復習 (注意) 論理的根拠に基いた合理的かつ現実的な

配線技術ロードマップ(2003年度)まとめ

Low-k(k及びk_{eff}値)

- ・性能律速経路における遅延モデルのR,Cスケーリング及び現実的に開発
 可能なLow-k材料を用いたILD構造の容量計算から導出したk_{eff}へ変更
 ・結果的にはITRS2002に比べて約3年後ろ倒し
- ・母材のみならずDCLやDPLのk低減や薄膜化が重要であることを明記

配線層数

・論理的なアプローチ(Davisの配線長分布モデル)により算出
 ・結果的にはITRS2002に比べて1-3層増加

配線/ビア最大電流密度

- ・IM信号線を流れる平均電流を最新パラメータを用いて再計算し、 現実に即したJ_{max}へ変更
- ・ビアを流れる電流値はビア複数取りが標準であるために表から削除 配線実効比抵抗(eff 値)
 - ・界面での電子散乱効果を考慮した計算結果と実測データを参照データとして 掲載し、32nm Node以降をRBWへ(ロードマップ表の eff数値は変更せず)

Work in Progress - Do not publish

7

 $\frac{(1/f_{max.})}{(gate delay with IM) \times (Logic depth)} + (SGM, GM)$ $(gate delay with IM) = k_1 R_T C_T + k_2 R_T C_W I_{avg} + k_3 R_W C_T I_{avg} + k_4 R_W C_W I_{avg}^2$

(SGM, GM)= $k_5 R_{LW1}C_{LW1}R_TC_TI_{long1}^2 + k_6 R_{LW2}C_{LW2}R_TC_TI_{long2}^2$

世代毎に30%の遅延時間(_{min})改善率を達成するように 配線抵抗(R_{W,LW1,LW2})及び配線容量(C_{W,LW1,LW2})をスケーリングする

9

k_{eff}の論理的導出に用いた配線構造モデル

DCL: Dielectric Capping Layer DPL: Dielectric Protection Layer

Work in Progress - Do not publish

45nm node / 2010年

Year of 1st Shipment 2004年アップデートでは数値の変更なしで、色分けを変更

11

電子散乱効果による配線比抵抗上昇を要求値に反映

・抵抗上昇モデルの合意を取り、技術要求テーブルの数値を変更 誘電率(k値)の技術的な困難度を示す色を変更

・要求値の変更なし(10年来初めて)

・Low-k技術の進展により、k_{eff}=3.1-3.6:黄 白、k_{eff}=2.7-3:赤 黄 記線電流密度(J_{max})の修正

・モデルはそのままで、動作周波数変更に伴い再計算し修正 DRAM向けコンタクト、ビアの接触比抵抗の要求値変更

・調査結果に基づいて変更

配線ピッチトレンド(M1)調査*

・最近の文献によると、M1(第一メタル)の微細化が加速

・高性能チップ用の別の表が必要(2005年版の検討項目)

メモリ対応の配線ロードマップ見直し*

・Cu導入時期など、台湾ITWGを中心に、ロードマップ見直し検討
 その他

・ビア中Cuボイドの検出サイズ要求値(メトロジー):ビア径の1/10 1/2
 ・洗浄に対する要求値(Low-kの許容k値変化など):2005年度検討項目*

*繰り越された項目

Work in Progress - Do not publish

STRJ WS: March 3, 2005, WG4

電子散乱による比抵抗上昇

報告されている実験値の中で、最も低い比抵抗にあう 粒界散乱確率"「"と、境界の反射係数"p"を用いて比抵抗の 要求値を求める

電子散乱による比抵抗上昇モデル

p=0(complete diffuse scattering)

比抵抗上昇による技術要求テーブルの改訂

・電子散乱を考慮した場合と、考慮しない場合の比抵抗を併記 ・配線遅延や、遅延一定の配線長なども、再計算し表記

	WAS	Interconnect RC delay (ps) for 1 mm Metal 1 line	191	224	284	355	384	477	595
Scattering を考慮しない場合 🛁 (2.2 μ cm)の <u>RC Delay</u>	IS	Interconnect RC delay (ps) for a 1 mm Cu Metal 1 line, <u>assumes no scattering and</u> <u>an effective ρ of 2.2 μΩ-cm</u>	191	224	284	355	384	477	595
Scattering とバリア厚みを考慮 、 した場合の <u>RC Delay</u>	ADD	Interconnect RC delay (ps) for 1 mm Cu Metal 1 line, assumes width-dependent scattering and a conformal barrier of thickness specified below	<u>254</u>	<u>304</u>	<u>3.95</u>	<u>502</u>	<u>553</u>	<u>714</u>	<u>930</u>
Scattering とバリア厚みを考慮 した場合の <u>Cu effective resistivity</u>	ADD	Conductor effective resistivity (μΩ-cm) Cu Metal 1 wiring including effect of width dependent scattering and a conformal barrier of thickness specified below	<u>2.93</u>	<u>2.99</u>	<u>3.06</u>	<u>3.11</u>	<u>3.22</u>	<u>3.35</u>	<u>3.5</u>
バリア厚み 📥	ADD	Barrier/cladding thickness (for Cu Metal 1 wiring) (nm) [3]	<u>9</u>	<u>8</u>	Z	<u>6</u>	<u>5.4</u>	<u>4.9</u>	<u>4.5</u>
Scattering を老歯したい提会	WAS	Line length (mm) where $\tau = RC$ delay (Metal 1 wire)	79	65	55	46	41	34	28
$(2.2 \mu \text{ cm}) \mathcal{O} \text{Line length}$	IS	Line length (μ m) where τ = RC delay (Metal 1 wire) <u>no scattering</u>	79	65	55	46	41	34	28

誘電率(k_{eff},k)の技術的困難度の色変更

	YEAR TECHNOLOGY NODE	2003	2004	2005	2006	2007	2008	2009	
	DRAM ¹ /2 PITCH (nm)	<u>100</u>	<u>90</u>	<u>80</u>	<u>70</u>	<u>65</u>	<u>57</u>	<u>50</u>	
ls	MPU/ASIC ¹ /2 PITCH (nm)	120	107	95	85	76	67	60	
ls	Number of metal levels	9	10	11	11	11	12	12	
ls	Metal 1 wiring pitch (nm)	240	214	190	170	152	134	120	
Was	Interlevel metal insulator (minimum expected)—effective dielectric constant (K)	3.3– 3.6	3.1- 3.6	3.1- 3.6	3.1- 3.6	2.7- 3.0	2.7- 3.0	2.7- 3.0	
ls	Interlevel metal insulator (minimum expected) —effective dielectric constant (K)	3.3– 3.6	3.1- 3.6	3.1- 3.6	3.1- 3.6	2.7- 3.0	2.7- 3.0	2.7- 3.0	
ls	Interlevel metal insulator (minimum expected)—bulk dielectric constant (K)	<3.0	<2.7	<2.7	<2.7	<2.4	<2.4	<2.4	

Low-k技術の進展により、 k_{eff} = 3.1-3.6:黄白、k_{eff} = 2.7-3:赤 黄

DRAMコンタクト/ビア接触比抵抗の見直し

Table 82a DRAM Interconnect Technology Requirements—Near-term

	Year of Production	2003	2004	2005	2006	2007	2008	2009
	Technology Node		hp90			hp65		
WAS	DRAM ½ Pitch (nm)	100	90	80	70	65	57	50
IS	Contact size(nm)	140	130	120	110	100	90	80
IS	Via-size(nm)	140	130	120	110	100	90	80
WAS	Specific contact resistance (Ω -cm ²)	1.00E-07	8.50E-08	7.00E-08	5.00E-08	4.00E-08	3.50E-08	3.00E-08
IS	Specific contact resistance (Ω -cm ²) for n+-Si	3.80E-08	3.20E-08	2.50E-08	2.30E-08	2.00E-08	1.70E-08	1.40E-08
IS	Specific contact resistance (Ω -cm ²) for p+-Si	8.20E-08	6.10E-08	4.50E-08	3.80E-08	3.20E-08	2.70E-08	2.20E-08
WAS	Specific via resistance (Ω -cm ²)	1.10E-09	9.00E-10	7.50E-10	5.80E-10	5.00E-10	4.00E-10	3.50E-10
IS	Specific via resistance (Ω -cm ²)	7.00E-10	7.00E-10	7.00E-10	6.00E-10	5.00E-10	4.00E-10	3.50E-10

コンタクト構造 n+-----W/TiN/Ti p+----W/TiN/Ti ビア構造 -2006 W/TiN on W 2007- Cu/Ta on Cu

<contact and via structure>

Table 82b - DRAM Interconnect Technology Requirements—Long-term

	Year of Production	2010	2011	2012	2013	2014	2015	2016	2017	2018
	Technology Node	hp45			hp32			hp22		
WAS	DRAM ½ Pitch (nm)	45	40	35	32	28	25	22	20	18
IS	Contact size(nm)	70	65	57	50	45	40	35	32	28
IS	Via-size(nm)	70	65	57	50	45	40	35	32	28
WAS	Specific contact resistance (Ω-cm ²)	2.30E-08		1.60E-08	1.20E-08		7.70E-09	5.50E-09		3.90E-09
IS	Specific contact resistance $(\Omega - cm^2)$ for n+-Si	1.20E-09	9.80E-09	8.20E-09	6.90E-09	5.80E-09	4.80E-09	4.00E-09	3.40E-09	2.80E-09
IS	Specific contact resistance (Ω -cm ²) for p+-Si	1.80E-08	1.50E-08	1.30E-08	1.10E-08	9.20E-09	7.40E-09	6.20E-09	5.10E-09	4.30E-09
WAS	Specific via resistance (Ω -cm ²)	3.20E-10		2.20E-10	1.60E-10		1.00E-10	7.60E-11		5.00E-11
IS	Specific via resistance (Ω -cm ²)	2.90E-10	2.50E-10	2.10E-10	1.70E-10	1.40E-10	1.20E-10	1.00E-11	8.40E-11	7.00E-11

·2003-2006年は、110-90nm DRAM の実測値を表記 ·2007年以降は、30%/2年で低減させる要求値を表記

4. Cu/Low-k配線の課題 Cu/Low-k配線の機械的強度解析

強度解析の背景と目的

FEMによる構造解析

解析結果

Low-k材料物性と配線特性上の課題

k値の低下とともに機械的強度が低下

CMP中のせん断応力によるULK材料の損傷

強度解析の背景と目的

ITRS2003で、具体的なCu/Lowk構造を想定してkおよび k_{eff}の要求値を提示

Low-k材では、k値の低減とともに機械的強度が低下。 機械的強度低下は、Cu/Low-k構造の機械的強度や、 CMPなどの製造プロセスにどの程度影響するのか? また、k_{eff}以外の要求指標(ヤング率、硬度、密着性など)の 必要性をWG4内で議論

目的

Low-k化に伴う機械的強度低下が、CMP中のCu/Low-k 構造へ与える影響を定量的に求める。

低圧CMP、パッケージ、密着性などの目標指標

解析方法

有限要素法により、Cu/Low-k2層構造配線の上層配線 CMP時にかかる応力分布を計算*

配線ロードマップで想定した3種類のLow-k構造を Nodeごとに計算

Cu配線内とLow-k絶縁膜内の応力分布を分けて表示

*望月、柴田、辻村、檜山、"ダマシン構造におけるVia部最大応力の有限要素解析" 日本機械学会関東支部2005 機械工学が支援する半導体薄膜技術

解析結果(Cu变形図)

解析結果(Low-k变形図)

90nm Node(2004)で想定されるILD構造のkとE_{ff}

<Homogeneous-type w/o cap > <Homogeneous-type with cap > <Hybrid-type with hard mask >

27

65nm Node(2007)で想定されるILD構造のkとE_{ff}

Assumptions

Cu D.B height	=	35nm
Hardmask height	=	35nm
/ia height	=	150nm
French height	=	170nm
Minimum L/S	=	100nm

$\frac{\text{Assumptions}}{K_{(Cu D.B)}/\text{Ef}} = 4.0/80$ $K_{(Hardmask)}/\text{Ef} = 3.0/3.0-14(9.0)$ $K_{(via)}/\text{Ef} = 2.5/1.7-13(7.5)$ $K_{(trench)}/\text{Ef} = 2.4/3.1$ $K_{eff} = 2.71$

()av.

45nm Node(2010)で想定されるILD構造のkとE_{ff}

29

Assumptions

Cu D.B height = 25nm Hardmask height = 25nm Via height = 110nm Trench height = 125nm Minimum L/S = 70nm

()av.

32nm Node(2013)で想定されるILD構造のkとE_{ff}

Assumptions

Cu D.B height	=	20nm
Hardmask height	=	25nm
Via height	=	80nm
Trench height	=	90nm
Minimum L/S	=	50nm

Assumptions

()av.

31

STRJ WS: March 3, 2005, WG4 32

STRJ WS: March 3, 2005, WG4 33

Low-k化の応力への影響まとめ

・k_{eff} = 2-2.5では、現状より応力が2-3倍に増加 CMP, パッケージ工程などでの応力対策が重要

Low-k化の応力への影響まとめ

- K effがノードと共に小さく選択されるために、ヤング率だけから評価される強度には余裕がなくなってくる。
- 2 また許容値はCu配線の降伏点やLowkの強度(ヤング率) だけでいえるものではなく破壊靭性値(Fracture Toughness) を大きい有機膜(PAR)を選んだり、密着性などいろいろな 物性値を考慮して決定すべきと判断する。
- 3 今回は、STRJの求める'論理的に説明できる数値の提供'の 一貫として先ずはヤング率で代表される強度対CMP圧力の結果を解析しました。

5.まとめと2005年度の課題

ITRS2004アップデート(**ITRS**)

電子散乱効果による配線比抵抗上昇を要求値に反映 誘電率(k値)の色分けを変更 配線電流密度(J_{max})の修正 DRAM向けコンタクト、ビアの接触比抵抗の要求値変更 配線ピッチトレンド(ローカル、インターミディエート)調査 メモリ対応の配線ロードマップ見直し(台湾TWG)

Cu/Low-k配線の課題(STRJ)

Low-k材の機械的強度低下がCMPに与える影響を解析

2005年度の課題

- ・洗浄に対する要求値検討:SEAJより特別委員参加(ITRS)
- ・2010以降のRBWに対するPotential Solution検討(STRJ)