

モデリングから見た微細MOSの 構造バラツキ/感度とその分析

- 素子構造は一意的に決め難く,感度は構造に依存 -

WG10(モデリング&シミュレーション) リーダー 和田哲典

WG10メンバー

佐藤成生,林洋一,中村光利,藤永正人,麻多進 藤原秀二,藤井克正,木村光紀,小島敏明,小町潤 海本博之,小方誠司,石原範之, 谷口研二,小谷教彦,大野隆央

Work in Progress - Do not publish *STRJ WS: March 10, 2006, WG10 Modeling&Simulation*

- 内容 -

• バラツキが素子特性に与える影響の分析 - 背景 : 2004年度の分析を踏まえて - 素子構造の推定: 推定は可能か? - バラッキの影響 : 定量的議論が出来るか? '03-STRJ活動で掲げた「モデリング&シ ミュレーション共通技術は適切だったか - 具体例をreview

Work in Progress - Do not publish

2004年度の分析を踏まえて

- 2004年は単純な構造(均-濃度)でパラッキ感度を解析 -

*:2004年度STRJワ-クショップ資料から

Work in Progress - Do not publish

バラツキ解析の手順

- バラツキ感度解析の前に素子構造推定が必要 -
- 目標性能の設定
- 素子構造の推定
 - 構造パラメータの設定(側壁膜厚,ドーズ量など)
 - 探索の実行
- ・ パラッキが性能に与える影響の解析
 変動幅の設定
 - 感度解析

Work in Progress - Do not publish STRJ WS: March 10, 2006, WG10 Modeling&Simulation 4

想定した素子と推定方法 2003年版ITRS記載のLOP(@2006) -

構造,電源電圧など

– L_a =37*nm , $T_{ox eff}$ =1.3nm , V_{dd} =0.9V , $\mu_{enhance}$ =1.0

• 目標性能**

 $-\mathbf{I}_{on}$ 610uA/um

- $-\mathbf{I}_{off}$ 30nA/um
- (V_{tb}(L) 0.28)² 0#
- 構造推定はGAを用いた多目的最適化を使用
 - I_{on}, I_{off}, V_{th}**ロールオフ**抑制の3性能を同時に最適化
 - チャネル部, Halohーズなど15個の構造パラメータが推定対象

 - * 以下のシミュレーションでは便宜上Lg=35nmで計算した ** 作業開始時に最新版(2005年)の情報がないため2003年版の内容を使用
 - # :Lg=30,35,40,50,80,1000nmのゲート長に対してロールオフを抑制する

Work in Progress - Do not publish STRJ WS: March 10, 2006, WG10 Modeling&Simulation 5

L_g=35nm , LOPのnMOS構造探索 ・ 15自由度で不純物分布はGaussianを仮定

Work in Progress - Do not publish

多目的最適化を用いた探索 複数の相反する目標性能を扱う最適化法

- ・ 全目標(I_{on}, I_{off}, V_{th})を同時に最適化
 不能の時は解の候補から選択
- GA(Genetic Algorithm)を用いれば一 回の解析で複数の解候補を得る*

下記計算例に用いた3種 の関数を重ねて表示

極小値を与えるパラメータが 赤い放物線上, 点(-1,-1), 点(1,-1)にある3個の関数それぞれ を出来るだけ最小化するパラメータをGA(Genetic Algorithm)で探索結果。計算初期(左)は広範囲 に拡がっているが,計算が進むと2点近傍に候補が絞られる(右)

*:Wada, 信学会VLD/SDM/応物シリコンテクノロジー分科会, 2002/10/1

Work in Progress - Do not publish

探索結果

- 世代が経過する毎に高性能な条件を探索 -

Work in Progress - Do not publishSTRJ WS: March 10, 2006, WG10 Modeling&Simulation8

8 F-04

L_g=35nm, LOPのnMOS構造探索 - どんな性能が実現可能か? -

Work in Progress - Do not publish

STRJ WS: March 10, 2006, WG10 Modeling&Simulation

9

LOPのnMOS候補4種を選択 - ほぼ同じIon, Ioffとなる2組のMOS -

Work in Progress - Do not publish

LOP_A, LOP_BのI-V特性

Work in Progress - Do not publish

	dXSW	Cext	CVth	Cdeep	Chalo	Xjext	XjVth	Xjhalo	Yjhalo	Xhalo	Yjext	Yhalo	Yext	YVt	OFST
Α	0.039793	13.7977	10.3372	10.2406	7.66866	17.4584	0.082818	39.5448	9.48805	10.6861	24.7363	22.2199	-2.06458	0.001534	7.02506
В	0.073946	9.71395	10.669	6.3255	5.3354	28.7373	0.1524	38.3555	18.6949	8.58394	19.3422	23.8844	1.48106	-0.00538	6.51921
С	0.030009	14.6629	5.62662	6.49487	9.52724	23.3241	0.060923	42.4151	43.4877	15.5989	10.4926	33.4181	8.95871	0.007487	3.86105
D	0.060489	2.95471	14.4598	10.0789	2.08866	16.9694	0.064106	14.0585	42.9589	12.2333	5.44404	17.1358	-7.89239	-0.00266	5.44404

STRJ WS: March 10, 2006, WG10 Modeling&Simulation

13

HPの素子構造 2003年版ITRS記載のHP(@2007)

- 構造,電源電圧など
 - Lg=25nm , Tox_eff=0.9nm , Vdd=1.1V , $\,\mu_{\,enhance}$ =1.0 ~ 2.0*
- 目標性能
 - I_{on} 1510uA/um
 - I_{off} 70nA/um
 - (V_{th}(L) 0.18)² 0^{**}
- 構造推定はLOPと同様
 - I_{on}, I_{off}, V_{th}ロ-ルオフ抑制の3性能を同時に最適化
 - チャネル部,Haloドーズなど15個の構造パラメータが推定対象

* : I_{on}を満たす構造がない場合,調整用に使用 * * : Lg=20, 25, 30, 50, 80, 1000nmのゲート長に対してロールオフを抑制する

Work in Progress - Do not publish *STRJ WS: March 10, 2006, WG10 Modeling&Simulation* 16

HPのnMOS候補4種を選択 移動度増加因子=1.0では解が見出せなかった ー

Work in Progress - Do not publish

選択したHPの4候補の断面構造

	dXSW	Cext	CVth	Cdeep	Chalo	Xjext	XjVth	Xjhalo	Yjhalo	Xhalo	Yjext	Yhalo	Yext	YVt	OFST
Α	0.010592	11.2098	14.2069	2.73156	3.27088	10.0539	0.185753	45.0327	37.8034	1.8189	14.5047	23.6042	-0.9389	0.036997	15.1325
В	0.018118	9.57149	3.82853	3.72405	2.20488	14.4122	0.186106	26.2077	6.23878	19.3847	21.515	10.3626	-1.07764	-0.01598	12.825
С	0.02715	10.5445	12.9492	10.5283	6.90942	17.2158	0.194416	16.8368	38.4159	-0.75839	20.3707	11.3569	-1.11682	0.026652	14.1156
D	0.011814	11.3469	14.2084	13.6671	3.27815	10.06	0.114483	45.034	37.813	16.8184	14.4973	23.5823	-3.03156	0.037006	15.4091

Work in Progress - Do not publish

構造因子の相関関係(L_g=25nmHP) ほぼ同一性能となる素子の設計自由度の指針は得難い

Work in Progress - Do not publish

まとめ(1)

- バラツキの影響を素子世代毎に評価できるか -
- (少数の)性能仕様で「世代」を規定した素子に対し、
 世代毎に括ってパラッキの影響を議論する事は困難
 - 異なる素子構造でも、ほぼ同じI_{on}、I_{off}、V_{th}-L、I-V特性が 得られる
 - バラツキに対する感度は素子構造に依存する
- (ほぼ)同じ性能でバラツキ感度が異なる素子を設計
 する自由度がある DFM/DFYの手掛り

– DFM/DFYへのモデリング&シミュレーション技術の活用が待たれる. それは「感度(=微係数)」まで含めた多目的最適化か?

Work in Progress - Do not publishSTRJ WS: March 10, 2006, WG10 Modeling&Simulation22

- バラツキが素子特性に与える影響の分析
 背景:2004年度の分析を踏まえて
 素子構造の推定 : 推定は可能か?
 バラツキの影響 : 定量的議論が出来るか?
- '03-STRJ活動で掲げた「モデリング&シ ミュレーション共通技術」は適切だったか
 – 具体例をreview

Work in Progress - Do not publish *STRJ WS: March 10, 2006, WG10 Modeling&Simulation* 23

2003年度に報告したM&S*の共通基盤技術

- 要求に応えM&S*をより有効活用するために -

• 並列計算

2003年度STRJワークショップの報告資料

* M&S: モデリング&シミュレーション(Modeling & Simulation)の略

Work in Progress - Do not publish

多目的最適化

- パラッキ解析の為に構造推定した(本報告)例 -
- ・ 競合する複数目標への最適 /現実解の探索
 - モデル・シミュレータ存在が前提
 - 通常は複数の解・選択肢
 どう選択・解釈するか
- ・ LOP , HPのI_{on} , I_{off} , V_{th}要求 値から構造推定が可能
- モデルやシミュレータの精度が鍵

- 精度向上・維持のキャリプレ-ションにも最適化技術は有効

2003ITRSで規定した性能仕様 からLOPの素子構造を推定した例

Work in Progress - Do not publish

パラメータ抽出と並列計算技術 - トランシ スタパラメータの一括抽出への適用例

- 精度維持に不可欠な キャリプレーションをどう効 率化?
 - モデル複雑化 キャリブレーション困難
 - モデル開発とキャリブレーショ ン方法提示は表裏一体
- 計算量増加への対策
 - 答に至る時間短縮が ますます重要
 - ・並列化に適す手法の
 ・重要性
 ・

*:Baba, et.al, 信学会VLD/SDM/応物シリコンテクノロジー分科会, 2005/9/26

Work in Progress - Do not publish

逆問題(インバースモデリング)

- MOSFET断面のドーパント分布推定への適用例 -
- 結果から原因を推定す る技術
 - 解の存在や一意性の保 ™ 証は数学的保証がない ため,使用時は注意を 要する
- •「順問題」のモデリングと は車の両輪
 - 原因の推定やキャリブレ-ションに適用

*:Komatsubara, et.al, 信学会VLD/SDM/応物シリコンテクノロシー分科会, 2005/9/26

Work in Progress - Do not publish

まとめ(2)

- '03報告で提案されたM&S*共通技術は? -
- ・提案した技術の多くは、学会発表などで実現・活用されつつある事が裏付けられた
 - 多目的最適化
 - (GA**を用いた)パラメータ抽出
 - 並列化技術
 - インバースモデリング(逆問題)
- 有用であり続けるための提言と、それを実現
 出来る体制を

* M&S: モデリング&シミュレーション(Modeling & Simulation)の略 * * GA: Genetic Algorithm,遺伝的アルゴリズム

Work in Progress - Do not publishSTRJ WS: March 10, 2006, WG10 Modeling&Simulation28