

計測/検査技術の新しい潮流

-新たなる技術要求と解決策-

STRJ WG 11

リーダー: 池野 昌彦(日立ハイテクロノジーズ)

サブリーダー: 河村 栄一(富士通)

2005Metrologyトピックス

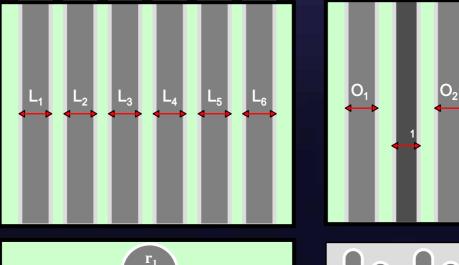
- CDメトロロジーの延命
 - Scatterometryの導入により 45 nm nodeまでの延命
 - Scatterometry, CD-SEMの校正問題
- LER, LWR計測の定義の明確化
 - 計測の標準化: 2 μ m領域, 10nm以下ピッチ 2005 ITRS 版に記載
 - LER, LWRの周波数特性とトランジスター特性、信頼性との相関を考慮
- 側壁(3D)ラフネス, void計測のGap
- ・ ナノレベルの歪計測の必要性と計測手法
- ・ 3次元原子イメージングの可能性
 - TEM/STEM収差補正技術の実現
 - Local Electrode Atom Probe (LEAP)技術の実用化

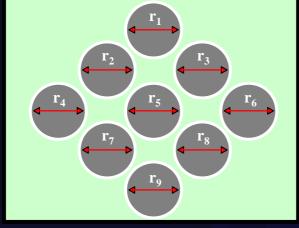
2005 ITRS Changes

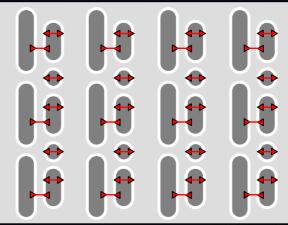
	2005	2007	2010	2013	2016	2018	2 /20	
Technology Node	80 nm	65 nm	45 nm	32 nm	22 nm	18nm	4 nm	Driver
MPU ½ Pitch (nm)	85	67	48	34	24	19	15	
MPU Printed Gate Length (nm)	54	42	30	21	15	12	9	
MPU Physical Gate Length (nm)	32	25	18	13	9	7	6	
Lithography Metrology								
Printed Gate CD Control (nm) Allowed Litho Variance = 3/4 Total Variance of physical gate length	3.3	2.6	1.9	1.4	0.9	0.7	0.6	ИPU
Wafer CD Tool 3 _o Precision P/T=0.2 for Printed and Physical Isolated Lines	0.7	0.5	0.4	0.3	0.2	0.1	0.1	ИPU
Wafer CD metrology tool precision (nm) * (P/T=.2 for dense lines**)	2.0	1.6	1.1	0.8	0.5	0.4	0.3	
Line Width Roughness (nm) <8% of CD	2.6	2.0	1.4	1.0	0.7	0.6	0.5	MPU
Precision for LWR	0.5	0.4	0.3	0.2	0.1	0.1	0.1	
Front End Processes Metrology								
High Performance Logic EOT equivalent oxide thickness (EOT) nm	1.2	1.1	0.65	0.5	0.5	0.5	0.5	MPU
Logic Dielectric EOT Precision 3 ₅ (nm)	0.0048	0.0044	0.0026	0.002	0.002	0.002	0.002	MPU
Interconnect Metrology								
Barrier layer thick (nm)	7.3	5.2	3.3	2.4	1.7	1.3	1.1	MPU
Void Size for 1% Voiding in Cu Lines	8.5	6.7	4.8	3.4	2.4	1.9		MPU
Detection of Killer Pores at (nm) size	8.5	6.7	4.8	3.4	2.4	1.9		MPU

CDメトロロジーの延命(1)

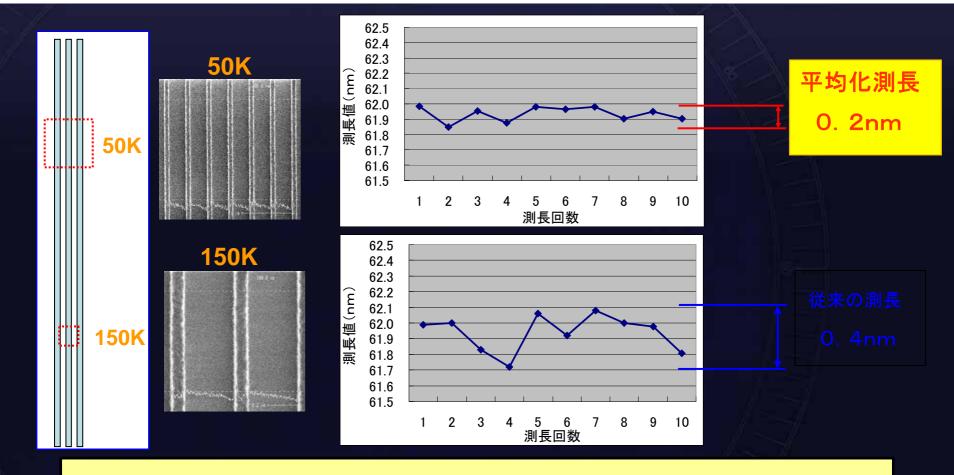
- 原動力: Scatterometryによる形状予測精度の向上、市販化。
- ニーズ: 計測精度のITRS要求、APCの普及, 適用
- 効果:ITRS 45 nm nodeまでCD Metrology許容
- Scatterometryの課題:
 - デバイスパターンを直接測定できない、見えない(専用パターン)。
 - メタルゲートにおけるドーパントの計測精度への影響の把握
 - 既存CD-SEMとの整合性(計測バイアス)、標準試料の作成、 校正、高精度な3D形状計測機(AFM等)による検証。
 - ホールの計測精度の確保
- CD Metrologyの新たな提案:
- CD SAXS(Small Angle X-ray Scattering)の提案(NIST: Wen-Li Wu)⇒透過X線の回折像からCD, 形状予測




CDメトロロジーの延命(2)


- ・CD-SEMの流れ:
 - -計測再現精度:計測倍率、計測パターンの最適化。計測パターンに最適な加速電圧の選択(多極化)
 - -分解能:収差補正(Cs:球面収差by静電レンズ導入、Cc:色収差by電子銃、energy filter)、10 nm half pitch以降は2次電子では見えない(e-→He+?)
 - 3D計測への応用

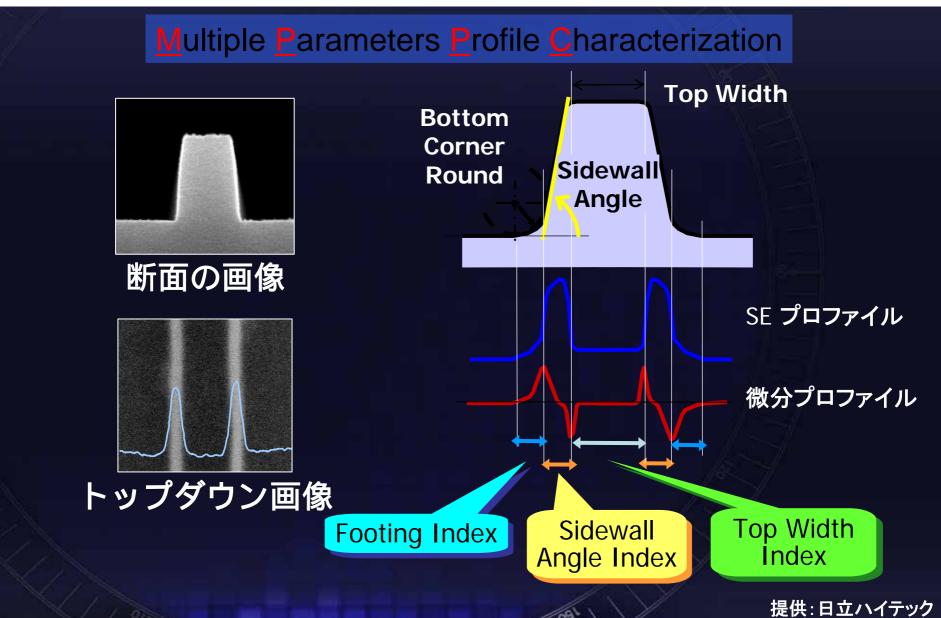
CD-SEMの再現精度の改善



- (1) 視野フィールド内のACD測定
- (2) 多様な特徴の計測が可能
- (3) 定期補正にターゲットが不要
- (4) ACD・ラフネス計測のポテンシャル

提供:日立ハイテック

CD-SEM計測再現精度結果


低倍率で広領域を観察し、画面内に現れる多数のパターンを 一度に測長・平均化する → 高精度なプロセスモニターを行う。

電子線密度が低くなるので、ダメージ(帯電やスリミング)をより少なくできる。

提供:日立ハイテック

Wave formからの形状予測

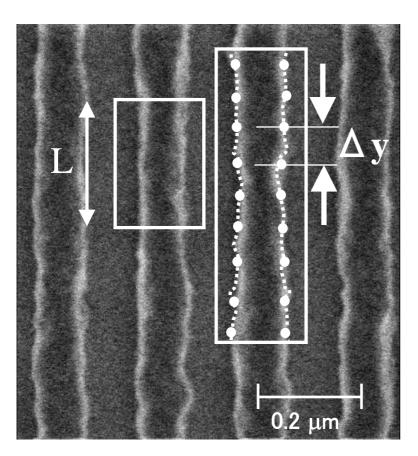
まとめ

(CDメトロロジーの延命)

- ScatterometryのCD, 形状計測への応用技術が改善され、P/T=0.2が45 nm nodeまで許容となった。
- ScatterometryはCD計測として、検証課題が存在する。
- CD-SEMもハード、ソフトウェアの改善で scatterometryと同様のP/T, 形状予測ができつつあり期待される。
- ・計測バイアス補正、校正は依然課題

LER計測の定義の明確化

背景


●ゲート、配線のLER, LWRがデバイス特性に及ぼ す影響が定量化されつつあり、LER, LWRの計 測の標準化が必要になった。

経緯

半導体で扱う材料の範疇でLER, LWRの周波数特性に定性的傾向があり、測定長(Y)=2μmと測定間隔(ΔY)≤10 nmの3σで正確に記述できるという提案を基に議論を継続。

計測条件の定義

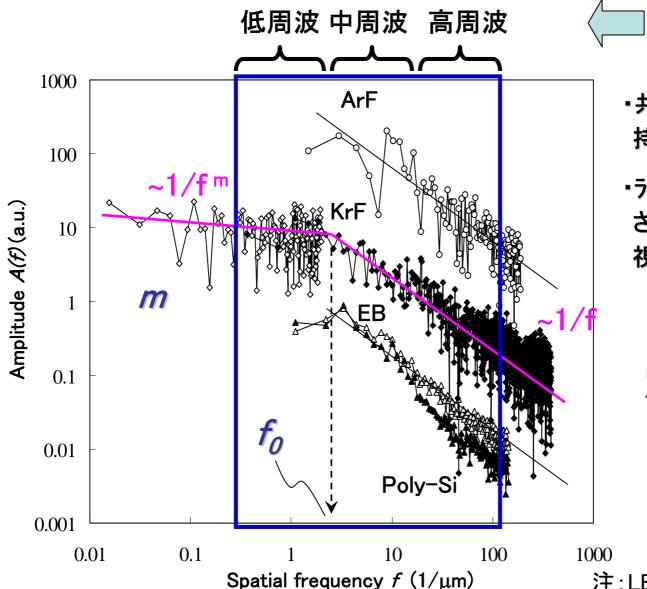
Line-Edge Roughness (LER)

材料・プロセス起因と思われる、 ラインエッジの局所的なゆらぎ (直線からの変動)

Line-Width Roughness (LWR)

ライン左右のエッジのLERにより生じる ライン幅の局所的なゆらぎ

計測値: L· Δyに大きく依存


計測の規格化

L=2 μ m, Δ y 10 nmで合意

周波数規格の検討

デバイス特性 から規定

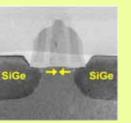
- ・共通のスペクトル形状を 持つ。
- ・ラフネスは長周期でも観測 され、長周期ラフネスは無 視できない。

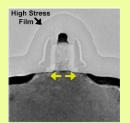
m: 0 to 0.2 f₀: 1 to 8 μm⁻¹ Typical value m=0.1, f₀=2-3

注:LER/LWRで違いはない

まとめ

(LER計測の定義の明確化)


- LER/LWRの計測条件の定義について2005
 L=2.0 µ m, △L 10nmを明記
- ・ LER/LWRはデバイス特性、信頼性との相関 データを基に今後も議論が必要。
- LER/LWRは3σで数値化されるが、周波数特性(低周波、中間周波数、高周波)の規定が必要かStudy必要。



歪計測の必要性と計測手法

(Si歪計測技術の全体像)

Nano-Raman and CBED

ナノレベルの歪計測の重要性大!

Transistor Level Stress

Micro-Raman, XRD, Photoreflectance Spectroscopy

Micro-Area Level Stress

Die Level Stress Die level flatness

Laser Interferometry

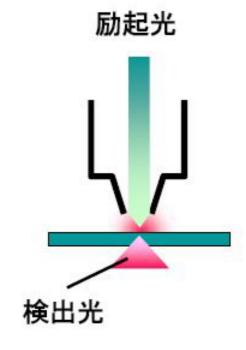
Coherent Gradient Sensing

Wafer Bow

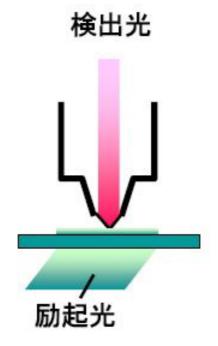
Laser Interferometry, Coherent Gradient Sensing

主な局所ひずみ測定法との比較

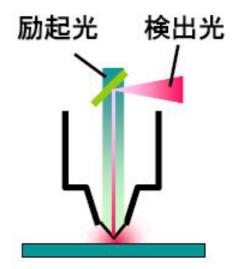
測定法	測定感度	空間分解能	特徴
プローブ誘起 ラマン測定	0.05 cm ⁻¹ (ε ~ 0.005%)	~50 nm	非破壊 顕微ラマンと同時測定可 能
顕微ラマン測定	0.05 cm^{-1} $(\varepsilon \sim 0.005\%)$	~1000 nm	非破壊、非接触
CBED (Convergent beam electron diffraction)	Δd/d= 0.02%	~100 nm	薄片試料
NBD (Nano-beam electron diffraction)	$\begin{array}{l} \Delta d/d = \\ 0.1\% \end{array}$	~ 10 nm	薄片試料


ε:ひずみ量

出典:2005年半導体MIRAIプロジェクト成果報



ラマン分光測定モード

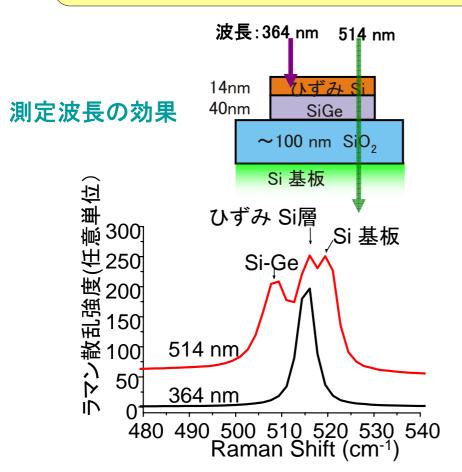

イルミネーション (透過)

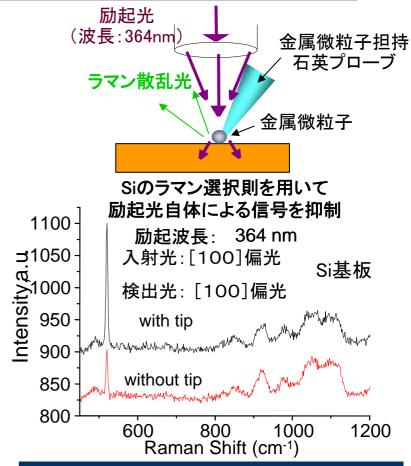
プローブにより近接場光を 試料に照射、試料を透過し た光を集光 コレクション

全反射条件で試料を照射、 プローブにより試料表面に 発生した近接場光を集光 イルミネーション ーコレクション

空間分解能が一番高いが 信号が非常に弱い

プロープにより近接場光を 試料に照射、プローブによ り反射光を集光

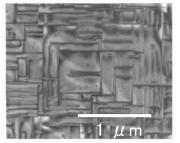

AFMプローブ誘起ラマン分光



測定原理:ラマン散乱スペクトルのピーク位置を測定

<mark>特長 1)波長364 nmのUV光を利用</mark>

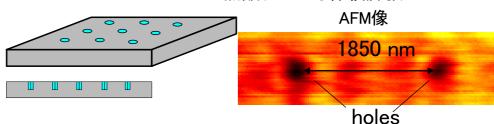
2)AFMプローブ先端の金属微粒子による散乱光でラマン散乱を測定

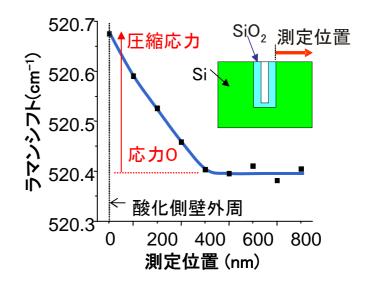

出典:2005年半導体MIRAIプロジェクト成果報

STRJ WS: March 10, 2006, WG11 MET/YE

ナノラマン分析事例

ひずみSOI基板の応力分布


透過電子顕微鏡像 $T_{Si}/T_{SiGe}=20$ nm/28nm 514 0 1 2 3 Position (μ m)


ミスフィット転位によるモザイク状の 局所歪みの変化を観測

STI模擬構造近傍の応力分布

Siに直径~100 nmのエッチング加工を行い 内壁を熱酸化

→ 熱酸化による体積膨張

Si ラマンピーク波数の位置依存性

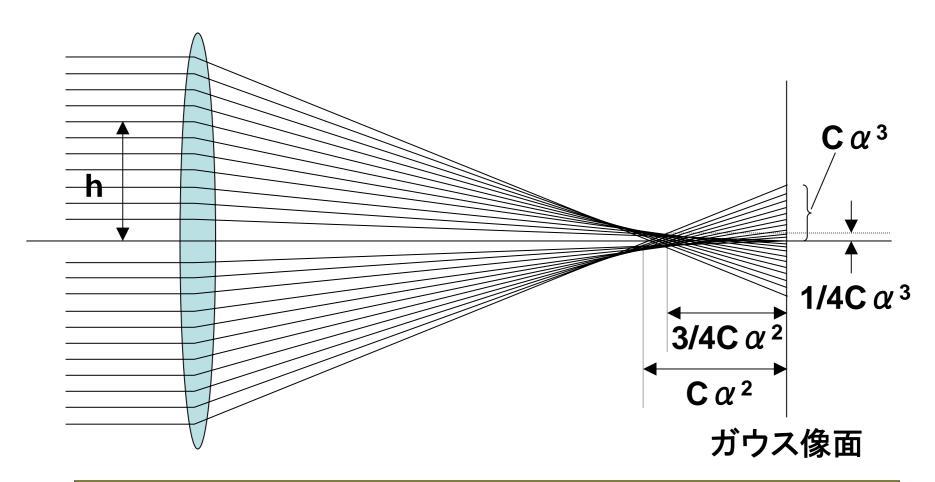
出典:2005年半導体MIRAIプロジェクト成果報

まとめ

(歪計測の必要性と計測手法)

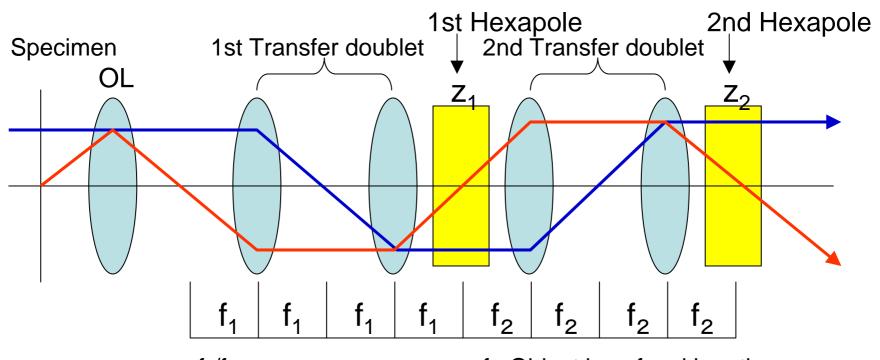
- ・歪計測については非破壊のMetrology tool の要望が強く、Trレベルの微小領域計測が 求められている。
- 非破壊の歪計測においてナノラマンは100 nm程度の空間分解能を達するに至っており、 更に分解能の改善が行われている。
- ・NBDは薄片試料作成が必要であるが10 nm 程度の空間分解能がある。

原子レベルの観察


- 1. TEM, STEM
- 球面収差補正
- 分析事例
- 技術課題
- 2. Atom prob

原理

- 分析事例
- 技術課題


球面収差とは

レンズの像高(h)によって光軸との交点が一方向に移動する

Ray diagram of Cs-corrector in HRTEM

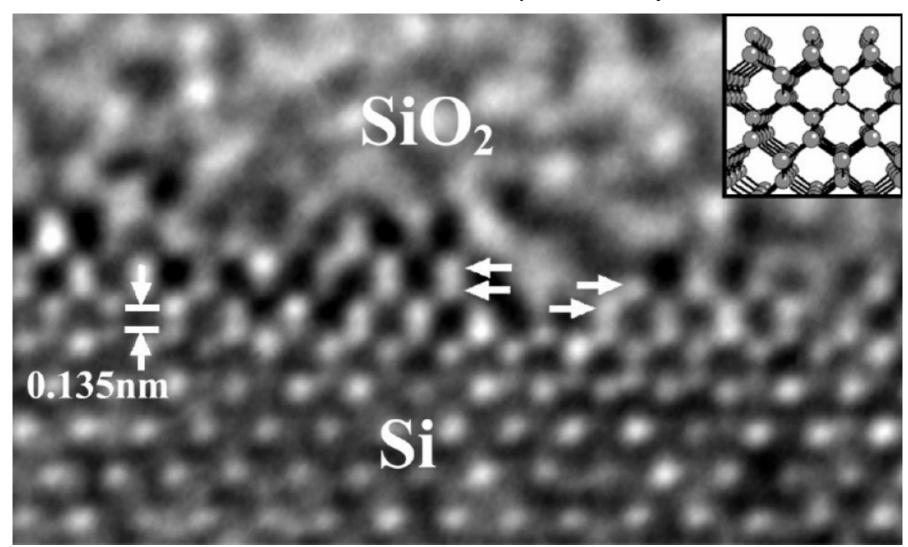
$$a=f_1/f_2$$

$$k_2 z_2 = k_1 z_1 / a^3$$

$$z_2 = a^2 z_1$$

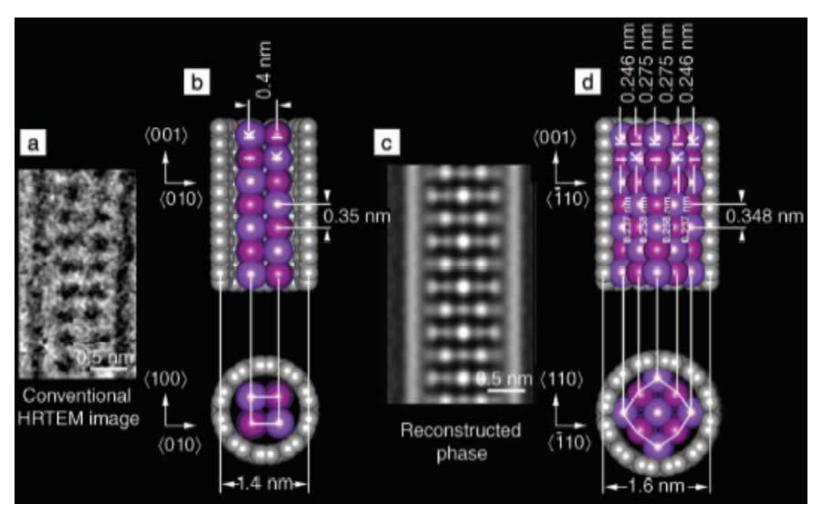
$$k_1 = [3a^4Cs/(2fo^4z_1^3)]^{1/2}$$

fo:Object lens focal length


k:Hexapole excitation

(after M. Haider(1998))

提供:名古屋大学田中信夫教授

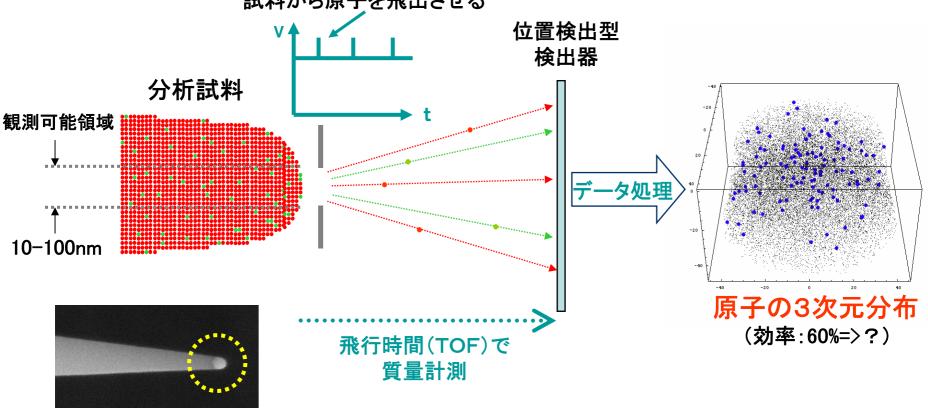

TEM実例1(Cs=0)

提供:名古屋大学田中信夫教授

TEM実例2(US TEAM Pj事例)

- (a) Conventional high-resolution transmission electron microscopy (HRTEM) image of a 2 X 2 KI crystal formed within a ~1.4-nm-diameter single-walled carbon nanotube (SWNT). (b) Structure model derived from (a). © Super-resolved HRTEM image of a 3 X 3 KI crystal formed in a ~1.6-nm-diameter SWNT. (d) Corresponding structure model derived from (c).
- J. Sloan, D.E. Luzzi, A.I. Kirkland, J.L. Hutchison, and M.L.H. Green: MRS Bulletin, April, 2004, p 265.

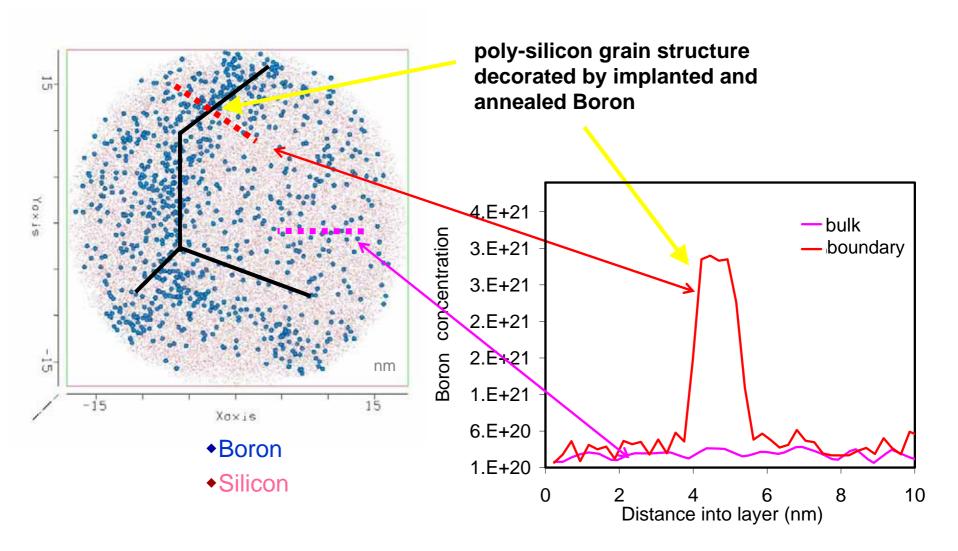
課題とまとめ


(TEM, STEM)

- ・球面収差補正で原子レベルの観察が明瞭になった。
- ・色収差(電子銃、高加速化)、コマ収差の低減を含め分解能の改善の余地有り。
- ・ 収差補正ユニットは高額、量産化による低価 格化も必要。

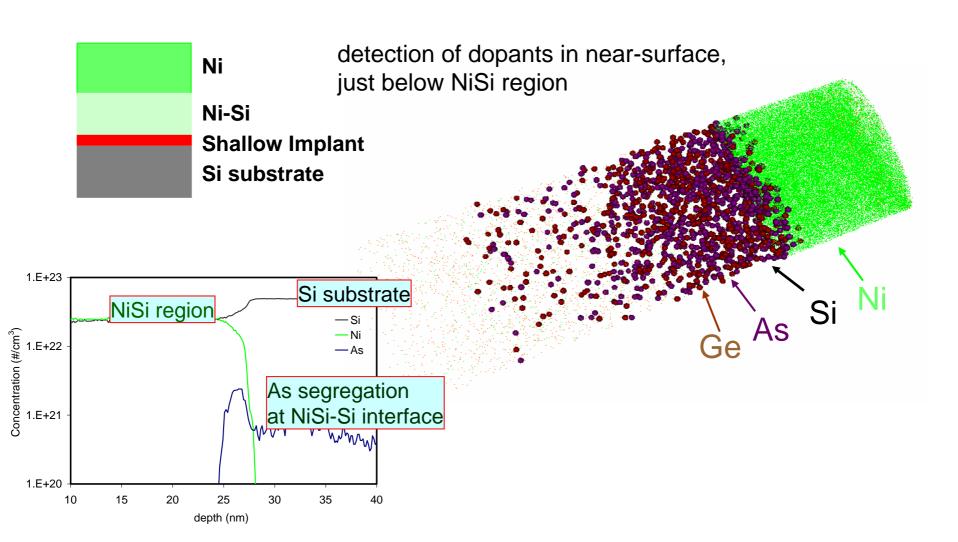
3次元アトムプローブ技術の実用化

高電界下でパルス電圧 またはフェムト/ピコ秒レーザ*印加し 試料から原子を飛出させる

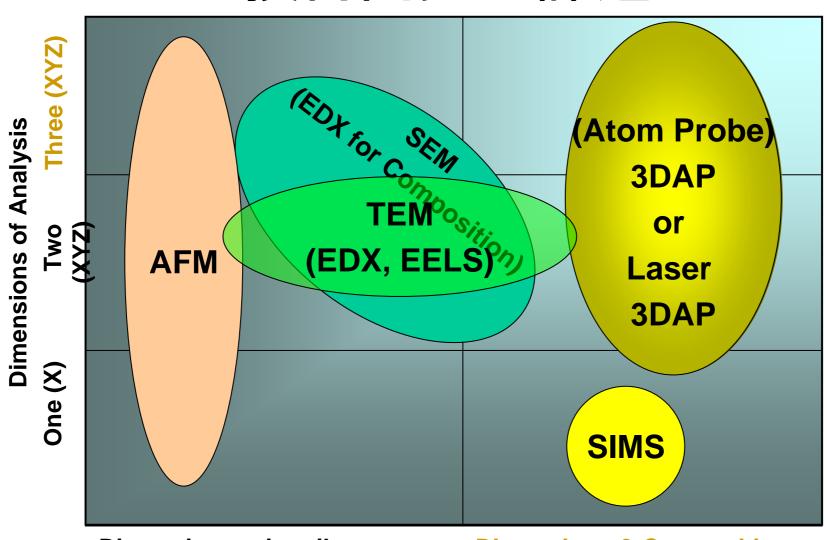


FIB加工で作製した分析試料

*金属以外ではレーザが必須



分析例一1:ポリシリ中のボロン偏析



分析例-2: NiシリサイドへのAs拡散

技術開発の課題

Dimensions primarily

Dimensions & Composition

技術開発の課題

長所

・原子レベルでの3次元配置が把握可能

長/短所

・測定領域が狭い

短所=解決すべき課題

- ・試料作製に手間がかかる:FIBでの加工必須
- 測定時にサンプルが壊れやすい
- ・絶縁/複合物質の解析が困難

↓ レーザ励起活用√ でかなり改善

検査技術の新しい潮流

一新たな技術要求と解決策一

- 1. 欠陥検出感度とS/N比 hpの6乗に反比例する感度領域での実用的検出感度、S/N比確保への挑戦
- 2. CDばらつきによる歩留まり低下対策(製造と設計の狭間で) ウェハ上でのOPCを加味した露光品質向上とその検査方法
- 3. ウェハエッジ・ベベルの管理と検査
- 4. 欠陥の分類と特徴解析

 本当に必要な分類数及び欠陥部微小領域の元素分析
- 5. 高アスペクト構造の検査困難性問題 底部欠陥からの信号検出

欠陥検出感度とSN比

背景:微細化、高アスペクト比化により

検出される異常点が激増

要求1:SN比を確保せよ

検査の高感度化によって、検出欠陥数が激増 大量の欠陥の中から、

- Nuisance (問題のない異常点)/False (虚報) と
- Killer欠陥(Real Defect)

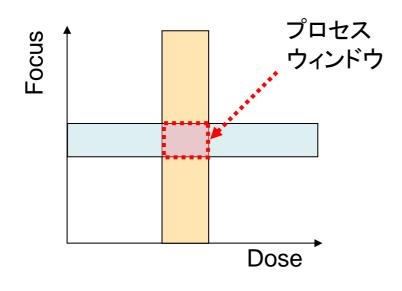
の高精度分離が必要

Nuisance

Killer欠陥

高精度分離が必要

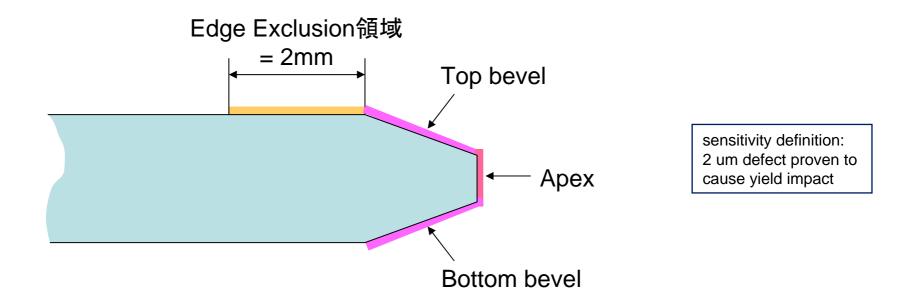
要求2:多種の欠陥を一度に拾え


Killer欠陥の種類が増加

- 検出すべき欠陥(システマティック欠陥他)の種類が増加
- 検査装置においてはハイスループットと低コスト化が必要
 - ★課題-EB式はスループットの向上、光学式は検出感度向上

CDばらつき

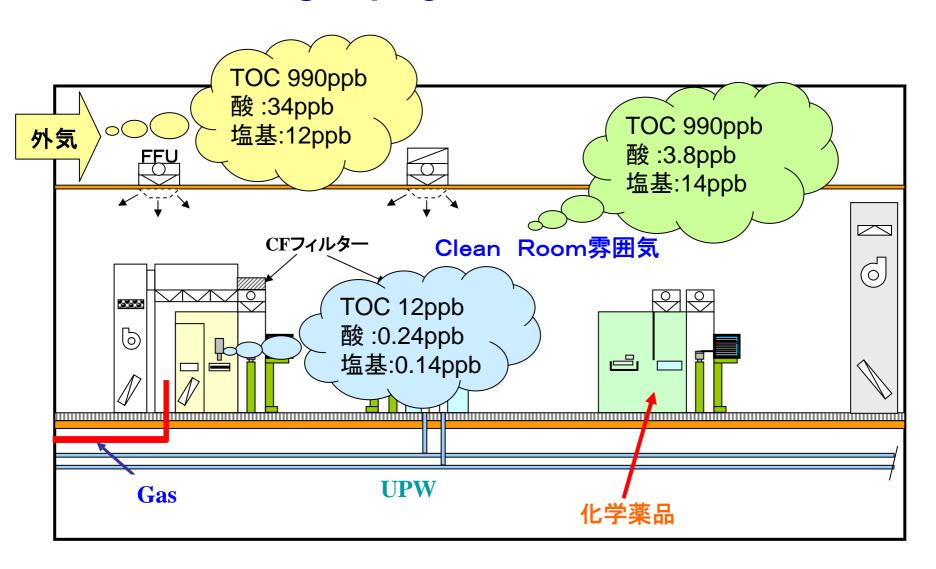
- 古くからの課題だが、昨年12月のITRSソウル会議で改めてYE課題として提示
- 計測、Litho、PIDS、FEP、配線、デザインの各WGとのクロスカットを要求
- CDばらつきの制御要求はもはや制御可能範囲を超える →ばらつきを許容する設計へ行かざるを得ない
- 要求精度を満たす計測・評価方法の確立も必要



プロセスウィンドウが狭すぎて、 もはやCDばらつきは制御困難 OPCを最適化したとしても 設計でカバー (プロセスバラツキを考慮した設計)

ベベル・エッジに対する管理・検査要求

- ITRS2005で新しくテーブルを追加(従来の検査装置での非検査領域)
- 検査領域は、上下ベベル部、先端部、EE部
- 検査感度要求は2種類(5xDR w/o 検査速度要求、25xDR@100WPH)
- 検査装置に欠陥レビュー機能も要求(光学式 or SEM式)
- 検査データ標準仕様(SDDS: Standardized Defect Data Set)を提案


Lithography Purge Gasesの規格値

NH3やSO4,シロキサンのクローズアップ

Lithography nitrogen tool/maintenance purging gas supply (H ₂ O, O ₂ , CO ₂) (ppb)	<500	<500	<500	<500	<500	<500	<500	<500	<500
Lithography nitrogen tool/maintenance purging gas supply (CO) (ppb)	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000
Lithography nitrogen tool/maintenance purging gas supply (H ₂) (ppb)	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000	<2000
Lithography nitrogen tool/maintenance purging gas supply (organics (molecular weight > benzene) normalized to hexadecane equivalent) (ppbV)	<22	<22	<22	<22	<22	<22	<22	<22	<22
Lithography nitrogen tool/maintenance purging gas supply (total base (as NH3)) (ppb)	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15
Lithography nitrogen tool/maintenance purging gas supply (total acid (as SO ₄) including SO ₂) (ppb)	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Lithography nitrogen tool/maintenance purging gas supply (refractory compounds (organics containing S, P, Si, etc.) normalized to hexadecane equivalent) (ppbw)	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Lithography helium tool/maintenance purging gas supply (H ₂ O) (ppb)	<3500	<3500	<3500	<3500	<3500	<3500	<3500	<3500	<3500
Lithography helium tool/maintenance purging gas supply (O ₂ , CO ₂) (ppb)	<500	<500	<500	<500	<500	<500	<500	<500	<500

Lithography-CR環境の現状

まとめ

Metrology

- CD MetrologyとしてScatterometryで45 nm node許容
- LER/LWR 2005 ITRSで計測条件明記、L = 2.0μm, Δ L ≦ 10 nm。 今後周波数特性も議論
- TEM, STEMは球面収差補正で分解能が向上、原子レベルの観察が可能に。今後も収差改善の余地あり。
- 原子レベルの観察としてAtom Probeがあり、原子レベルでの3次元配置の把握が実用レベルで可能になりつつある。

Inspection

- 欠陥検査でのS/N比確保、COO低減
- CDばらつきの制御→ばらつきを許容する設計へ行かざるを得ない
- ウェーハエッジ・ベベルの検査要求テーブルを追加
- Wafer Environment Contamination Control
 - リソ環境の新たな要求値が示されたが、厳しすぎる項目も存在する