

光か? EUVか? k1:0.25の壁を乗り越えられるか -

WG5: Lithography

(株)富士通研究所 羽入 勇

Work in Progress - Do not publish

略語説明

- 193i : ArFエキシマレーザー(: 193nm)を光源とする液浸露光
 液浸液の世代毎に193i+, 193i++と表記することをiTWGで検討中
- BARC: <u>Bottom Anti-Reflection Coating</u>,反射防止膜
- DE : <u>D</u>ouble <u>E</u>xposure
- DOF : <u>D</u>epth <u>of</u> <u>F</u>ocus
- DP : <u>D</u>ouble <u>P</u>atterning
- EUV : <u>Extreme Ultra V</u>iolet, 極端紫外線
- LuAG : <u>Lu</u>tetium <u>A</u>luminum <u>Garnet</u>, Lu₃Al₅O₁₂
- ML2 : <u>Maskless Lithography</u>
- NA : <u>N</u>umerical <u>A</u>perture, レンズ開口数
- OPC : <u>Optical Proximity Correction</u>, 光近接効果補正
- SE : <u>S</u>ingle <u>E</u>xposure

Work in Progress - Do not publish

2006年度 WG5メンバー

- JEITA半導体部会/関連会社 <u>10名</u>
 内山 貴之(NECEL)、須向 一行(ルネサス)、笹子 勝/国際担当(松下)、
 守屋 茂(ソニー)、東川 巌/サブリーダー(東芝)、田口 隆(沖電気)、
 和田 恵治(ローム)、山口敦子/(日立)、田中 秀仁(シャープ)、
 羽入 勇/リーダー(富士通)
- コンソーシアム <u>3名</u>
 岡崎 信次(ASET-EUV)、山部 正樹/事務局(ASET-D2I)、
 寺澤 恒男(Selete)
- 特別委員(大学·独立行政法人) <u>2名</u> 堀池 靖浩(物材研)、戸所義博(奈良先端大)
- 特別委員(SEAJ、他) <u>11名</u>
 森晋(SEAJ:ニコン)、山田 雄一(SEAJ:キヤノン)、山口 忠之(SEAJ:TEL)、
 山口哲男(SEAJ:ニュ フレアテクノロジィ)、龜山 雅臣/国際担当(ニコン)、
 竹花洋一(MET)、林 直也(大日本印刷)、奥田 能充(凸版)、佐藤充(TOK)、
 小野寺純一(TOK)、栗原 啓志郎(アライアンスコア)、

内容

1. ITRS 2006 Updateにおけるリソグラフィ章の改訂
 2. ArF液浸露光とその限界

- 液浸露光はどこまで使えるか
- ダブルパターニングとその課題

3. EUV露光技術

4. まとめ

Work in Progress - Do not publish

2006 Update リソグラフィ章の主な改訂

- リソグラフィ候補の改訂
 - 液浸リソのオプションの明確化
 ArF露光でのダブルパターニング
- 困難な課題
 - ダブルパターニングの項目を追加
- マスクテーブルの改訂
 ダブルパターニングに関する項目の追加
 技術の進歩によるカラーリングの変更
- マスクレスリソ(ML2)テーブルの追加
 - データー量とグリッドサイズへの要求

2006 ITRS リソグラフィへの要求

Year of Production	2006	2007	2010	2013	2016	2019
DRAM ½ pitch (nm) (contacted)	70	65	45	32	22	16
DRAM ½ pitch (nm)	70	65	45	32	22	16
Flash ½ pitch (nm) (un-contacted poly)	64	57	40	28	20	14
Contact in resist (nm)	79	70	50	35	25	18
Contact after etch (nm)	72	64	45	32	23	16
Overlay [A] (3 sigma) (nm)	13	11	8	5.7	4	2.8
CD control (3 sigma) (nm) [B]	7.4	6.6	4.7	3.3	2.3	1.7
MPU gate in resist (nm)	48	42	30	21	15	11
Contact in resist (nm)	97	84	56	39	28	20
Contact after etch (nm)	88	77	51	36	25	18
Gate CD control (3 sigma) (nm) [B] **	2.9	2.6	1.9	1.3	0.9	0.7
Mask CD uniformity (nm, 3 sigma) isolated lines (MPU gates), binary or attenuated phase shift						
mask [H] *	3.4	2.6	1.3	1	0.7	0.5
Mask Image placement (nm, multipoint) [F]	8	7	4.8	3.4	2.2	1.5
Mask Image placement (nm, multipoint) for double patterning	5.7	4.9	3.4	2.4	1.6	1.1
Low frequency line width roughness: (nm, 3 sigma) <8% of CD *****	3.8	3.4	2.4	1.7	1.2	0.8

Manufacturable solutions exist, and are being optimized

Manufacturable solutions are known

Interim solutions are known 🔶

Manufacturable solutions are NOT known STRJ WS: March 9, 2007, WG5 Litno

Work in Progress - Do not publish

2006 Update リソグラフィ候補の改訂

Work in Progress - Do not publish

STRJ WS: March 9, 2007, WG5 Litho

1

ダブルパターニングの項目追加

Optical Mask Requirements	2006	2007	2010	2013
DRAM HP (nm)	70	65	45	32
Image placement for double patterning	5.7	4.9	3.4	2.4
Difference in CD Mean-to-target for two masks as a double patterning set	2.8	2.6	1.8	1.3

Resist Requirements	2006	2007	2010	2013
DRAM HP (nm)	70	65	45	32
Defects in spin-coated resist films for double patterning (#/cm ²)	0.005	0.005	0.005	0.005
Backside particle density for double patterning (#/cm ²)	0.285	0.14	0.14	0.14

液浸露光とは

NA = n sin θ n: 液体の屈折率

Resolution = k1 λ / NA = k1 λ / (n sin θ) = k1 (λ /n) / sin θ 解像力の向上

DOF = k2 $(\lambda/n) / 2 (1-\cos \theta)$ ~ k2 $(\lambda/n) / \sin^2 \theta$ = k2 <u>n λ /</u> NA²

焦点深度の向上

Work in Progress - Do not publish

期待される液浸露光システム

Work in Progress - Do not publish

期待される液浸露光システム

Work in Progress - Do not publish

NA=1.30 projection optics + POLANO (polarized illumination) (σ =0.98 dipole illumination)

(株)ニコンのご好意による

Work in Progress - Do not publish

ArF液浸露光の限界 ハーフピッチとk1値-

$k1=HP * NA/\lambda$

		DRAM Half-Pitch							
方式	NA	2007	2010	2013	2016	2019			
		65nm	45nm	32nm	22nm	16nm			
	0.92	0.31	0.21	0.15	0.10	0.08			
193i	1	0.34	0.23	0.17	0.11	80.0			
	1.07	0.36	0.25	0.18	0.12	0.09			
	1.2	0.40	0.28	0.20	0.14	0.10			
∧┎汯淀	1.3	0.44	0.30	0.22	0.15	0.11			
AIF/肞/文	1.35	0.45	0.31	0.22	0.15	0.11			
	1.45	0.49	0.34	0.24	0.17	0.12			
193i+	1.5	0.51	0.35	0.25	0.17	0.12			
193i++	1.6	0.54	0.37	0.27	0.18	0.13			
	1.7	0.57	0.40	0.28	0.19	0.14			
			<u> </u>	、 メ セリ					

45nm-hp(ロジック)にはNA>1.5、32nm-hp(メモリ)にはNA>1.6が必要

高屈折率液浸は本当に実現できるか? タイミングは?

Work in Progress - Do not publish

ダブルパターニング / ダブル露光の方式

▶ ピッチ分割 - 大きなk1で露光 -

> X-Y分割 + ダイポール照明 - 方向限定でより強い超解像 -

➢ 対向部分の縮小 - SRAM Poly -

Work in Progress - Do not publish

STRJ WS: March 9, 2007, WG5 Litho 14

上記2方式と組み合

せることも可能

ダブル露光の限界

Work in Progress - Do not publish

ダブルパターニングとは?

Work in Progress - Do not publish

WOLK III I TOZICSS - DO HOU PUDIISH

K1<0.2のパターン形成

Work in Progress - Do not publish

IMECのご好意による STRJ WS: March 9, 2007, WG5 Litho 18

ダブルパターニングの限界

k1=HP * NA/ λ

			DRAM Half-Pitch							
方式	NA	2007	2010	2013		2016		2019		
		65nm	45nm	32 / SE	32 / DP	22 / SE	22 / DP	16 / SE	16 / DP	
	0.92	0.31	0.21	0.15	0.31	0.10	0.21	80.0	0.15	
193i	1	0.34	0.23	0.17	0.33	0.11	0.23	0.08	0.17	
	1.07	0.36	0.25	0.18	0.35	0.12	0.24	0.09	0.18	
	1.2	0.40	0.28	0.20	0.40	0.14	0.27	0.10	0.20	
∧r⊑汯泀	1.3	0.44	0.30	0.22	0.43	0.15	0.30	0.11	0.22	
	1.35	0.45	0.31	0.22	0.45	0.15	0.31	0.11	0.22	
	1.45	0.49	0.34	0.24	0.48	0.17	0.33	0.12	0.24	
193i+	1.5	0.51	0.35	0.25	0.50	0.17	0.34	0.12	0.25	
193i++	1.6	0.54	0.37	0.27	0.53	0.18	0.36	0.13	0.27	
	1.7	0.57	0.40	0.28	0.56	0.19	0.39	0.14	0.28	

22nm-hp以降もArF液浸(光)適用の可能性あり

Work in Progress - Do not publish

ダブルパターニングの課題(1) - アライメント誤差の影響

■ LaとLb, VaとVbをそれぞれDPで形成した場合

Work in Progress - Do not publish

設計制限、ピッチの緩和等が必要

Work in Progress - Do not publish

EUV露光技術

ArFより一桁以上短い波長(13.5nm)を用い解像力を大幅に向上

EUV露光技術の開発状況

- tool(フルスキャナ)が出荷さ れ立上中(IMEC, INVENT)
- 06/Q3 • 日本ではSelete/MIRAI, EUVA を中心とした体制で開発強化
- 高出力のEUV光源の実現が実 用化の第一課題

Seleteに導入されたSFET

(Small Field Exposure Tool)

Supported by NEDO キヤノン(株のご好意による

Small-Field Tool

開発中のEUV1(フルズキャナ)

α-Tool

(㈱ニコンのご好意による

Work in Progress - Do not publish

ΞUVΛ Selete)

HiNA3@ASETによるレジストパターン

New resist (25X-MBSA-M)

ASETのご好意による

Resist film thickness: 58 nm^t Exposure Dose : 12.2 mJ/cm²

Work in Progress - Do not publish

高 NA レンズ 設 計

キヤノン㈱のご好意による

Work in Progress - Do not publish

EUV露光の可能性

$k1=HP * NA/\lambda$

				DRA	M Half-	Pitch			
方式	NA	2007	2010	2013		2016		2019	
		65nm	45nm	32 / SE	32 / DP	22 / SE	22 / DP	16 / SE	16 / DP
	0.92	0.31	0.21	0.15	0.31	0.10	0.21	80.0	0.15
193i	1	0.34	0.23	0.17	0.33	0.11	0.23	80.0	0.17
	1.07	0.36	0.25	0.18	0.35	0.12	0.24	0.09	0.18
	1.2	0.40	0.28	0.20	0.40	0.14	0.27	0.10	0.20
	1.3	0.44	0.30	0.22	0.43	0.15	0.30	0.11	0.22
	1.35	0.45	0.31	0.22	0.45	0.15	0.31	0.11	0.22
	1.45	0.49	0.34	0.24	0.48	0.17	0.33	0.12	0.24
193i+	1.5	0.51	0.35	0.25	0.50	0.17	0.34	0.12	0.25
193i++	1.6	0.54	0.37	0.27	0.53	0.18	0.36	0.13	0.27
	1.7	0.57	0.40	0.28	0.56	0.19	0.39	0.14	0.28
	0.25	1.20	0.83	0.59		0.41		0.30	
EUV	0.3	1.44	1.00	0.7	71	0.4	49	0.3	36
	0.35	1.69	1.17	0.8	33	0.	57	0.4	41
	0.4	1.93	1.33	0.9	95	0.0	65	0.4	47

高NA-EUVにより16nm-hpも視野に!

Work in Progress - Do not publish

まとめ

■ 光

ArF液浸の高屈折率化とダブルパターニングの組合せで
 22nm-hp以降への適用可能性あり.
 課題 NA~1.7: レンズ材料,液浸液,レジスト材料の開発
 DP : 重ね合せ(装置/マスク)/パターン分割(ソフト)

EUV

高NA化により16nm-hpも視野. 課題 高出力光源,集光ミラー寿命,レジスト感度&LER...

■共通の課題

- 45nm-hp@2010 (β機@2008)
 ロジックには193i+ or DPが不可欠 装置のタイミングは?
- 32nm-hp@2013 (β機@2011)
 193i++&DP, EUV のβ機のリリース時期は?

Work in Progress - Do not publish