

WG5(リソグラフィ)活動報告

「先端リソグラフィ技術 – 現状と課題 –」

株式会社東芝 東川 巌

- WG5(リソグラフィ)の体制と2008年度の活動状況
- ITRS2008 Lithography章の概要
- リソグラフィ技術の現状と課題
- ITRS2009 Lithography章の指針
- まとめ

略語説明

NA **Numerical Aperture** CD Critical Dimension, CDU (CD Uniformity) DOF **Depth of Focus** Line Edge Roughness/Line Width Roughness LER/LWR RET **Resolution Enhancement Techniques** OAI **Off-Axis Illumination** Phase Shifting Mask, cPSM (complementary PSM), APSM (Alternating PSM), EPSM PSM (Embedded PSM), Att. PSM (Attenuated PSM) **Electronic Design Automation EDA** OPC **Optical Proximity Corrections, RB/MBOPC (Rule Base/Model Base OPC) Design for Manufacturing/Design for Manufacturability** DFM Scattering Bar/Sub Resolution Assist Feature™ **SB/SRAF** Mask Error Enhancement Factor (=MEF) MEEF Anti-Reflection Coating, BARC (Bottom ARC), TARC (Top ARC) ARC AMC **Airborne Molecular Contamination** DE/DP/SADP Double Exposure/Double Patterning/Self Aligned DP ESD **Electro Static Discharge** NGL **Next Generation Lithography** EUVL **Extreme Ultraviolet Lithography** ML2 **Maskless Lithography** NIL NanoImprint Lithography, UV-NIL (Ultraviolet NIL), SFIL (Step & Flash Imprint Lithography) DSA **Directed Self Assembly**

活動体制 WG5メンバー

- JEITA半導体部会/関連会社 -東川 巌/リーダー (東芝) 内山 貴之/サブリーダー (NECEL) 羽入 勇 (富士通マイクロエレクトロニクス) ⇔ 安部 直道 須向 一行 (ルネサステクノロジ) 笹子 勝 (パナソニック) 守屋 茂 (ソニー) 田口隆(ローム/沖セミコンダクター) 和田 恵治 (ローム) 田中 秀仁 (シャープ) 岡崎 信次(日立製作所) 山口 敦子 (日立製作所)

- コンソーシアム -山部 正樹/事務局(ASET-D2I) 寺澤 恒男 (Selete) 笠間 邦彦 (EUVA) - 大学·独立行政法人 -戸所 義博 (奈良先端大) - SEAJ、他 -森晋 (SEAJ: ニコン) 山田 雄一 (SEAJ: キヤノン) 中島 英男 (SEAJ: TEL) ← 山口 忠之 山口 哲男 (SEAJ: ニューフレアテクノロジィ) 龜山雅臣/国際担当(ニコン) 大久保 靖 (HOYA) 林 直也 (大日本印刷) 外岡 要治 (凸版印刷) ← 奥田 能充 小野寺 純一 (東京応化工業) 栗原 啓志郎(アライアンスコア) 計 25名

2008 Lithography Technology Requirements

O D T O										
INDEX	Table LITH3a&b Lithography Technology Re	DRAM		ars						
ITWG	T (D)		2000	2002	2020	2022	2.022	2022	2024	2075
INDEX	rear of Production	2007	2008	2009	2010	2011	2012	2015	2014	2015
IS	DRAM ½ pitch (nm) (contacted)	<u>68</u>	<u>59</u>	<u>52</u>	<u>45</u>	<u>40</u>	<u>36</u>	<u>32</u>	<u>28</u>	<u>25</u>
	DRAM									
IS	DRAM % pitch (nm)	68	59	52	45	40	36	32	28	25
IS	CD control (3 sigma) (nm) [B]	7.1	6.2	5.4	4.7	4.2	3.7	3.3	2.9	2.6
IS	Contact in resist (nm)			7	50	44	39	35	31	28
IS	Contact after etch (nm)	— F	I ASH	2	45	40	36	32	28	25
IS	Overlay [A] (3 sigma) (nm)			.3	9.0	8.0	7.1	6.4	5.7	5.1
	Flash									
IS	Flash ½ pitch (nm) (un-contacted poly)	54	45	40	36	32	28	25	22	20
IS	CD control (3 sigma) (nm) [B]	5.6	4.7	4.2	3.7	3.3	2.9	2.6	2.3	2.1
IS	Contact in resist (nm)	59	49	44	39	35	31	28	25	22
IS	Contact after etch (nm)			0	36	32	28	25	22	20
IS	Overlay [A] (3 sigma) (nm)		MPU	.2	11.8	10.5	9.4	8.3	7.4	6.6
	MPU									
IS	MPU/ASIC Metal 1 (M1) ½ pitch (nm)	68	59	52	45	40	36	32	28	25
WAS	MPU gate in resist (nm)	42	38	34	30	27	24	21	19	17
IS	MPU gate in resist (nm)	54	47	41	35	31	28	25	22	20
WAS	MPU physical gate length (nm) *	25	23	20	18	16	14	13	11	10
IS	MPU physical gate length (nm) *	32	29	27	24	22	20	18	17	15.3
IS	Gate CD control (3 sigma) (nm) [B] **	3.3	3.0	2.8	2.5	2.3	2.1	1.9	1.7	1.6
IS	Contact in resist (nm)	84	73	64	56	50	44	39	35	31
IS	Contact after etch (nm)	77	67	58	51	45	40	36	32	28
IS	Overlay [A] (3 sigma) (nm)	17	15	13	11	10.0	8.9	8.0	7.1	6.3
	Chip size (mm ²)									
	Maximum exposure field height (mm)	26	26	26	26	26	26	26	26	26
	Maximum exposure field length (mm)	33	33	33	33	33	33	33	33	33

2008 update - MPU/ASIC -

MPU/ASIC

Potential Solutions 2008 – 2009

Potential Solutions

Potential Solutions

- ArF Immersion Single Exposure
- ArF Extension: Pitch Splitting(DPT), Spacer
- EUVL
- ML2
- NIL
- DSA & Others

Optical lithography extension $\swarrow^{R=k_1} \frac{\lambda}{NA}$

193nm/ArF Single Exposureの限界 NA=1.35 → hp 38~39nm (L&S)

Year of Production		2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
DRAM ½ pitch (nm)		68	59	52	45	40	36	32	28	25	22.5	20	17.9	15.9	14.2
Flash ½ pitch (nm) (un-contacted	poly)	54	45	40	36	32	28	25	22	20	17.9	15.9	14.2	12.6	11.3
Flash ASML presentation		45		32		22		16		11					
	NA				k1										
ArF Dry	0.75	0.25													
	0.85	0.29	0.25												
	0.93	0.31	0.27	0.24											
ArF Water Immersion	1.2	0.4	0.35	0.31	0.28	0.25									
	1.3	0.44	0.38	0.34	0.3	0.27	0.24	0.21							
DRAM	1.35	0.45	0.4	0.35	0.31	0.28) .25	0.22	0.2	0.18	0.16	0.14	0.12	0.11	
Flash	1.35	0.37	0.31	0.28	9.25	0.22	0.2	0.18	0.15	0.14	0.12	0.11	0.1	0.09	
ArF High Index Immersion	1.45	0.49	0.43	ປີເວີຍີ	0.34	0.3	0.27	0.24							
	1.55		0.46	0.4	0.36	0.32	<u>/</u> 29	0.26							
	1.7		0.5	0.44	0.4	0.35	0.21	0.28	0.25						
EUVL	0.25		1.05	0.93	0.83	0.74	0.66	0.59	0.52	0.47	0.42	0.37	0.33	0.29	0.26
	0.32						0.85	0.75	0.67	0.6	0.53	0.48	0.42	0.38	0.34
	0.45								0.94	0.84	0.75	0.67	0.6	0.53	0.47

Figure 1. OPC evolution.

"Fabrication of defect-free full-field pixelated phase mask"

Wen-Hao Cheng*, Jeff Farnsworth, Wai Kwok, Andrew Jamieson, Nathan Wilcox, Matt Vernon*, Karmen Yung, Yi-Ping Liu, Jun Kim, Eric Frendberg, Scott, Proc. of SPIE Vol. 6924, 69241G, (2008)

k1<0.25

DPT Technical Issues

- Overlay、CDU、CD MTT
- Process Complexity
- Cycle time/TAT
- RDR、Area Penalty, Pitch walking
- Mask Spec. & Design
 - Data Splitting/Cutting/Coloring、OPC+SRAF
 - CDU, Image Placement, Overlay
- New Equipments/Materials
- Metrology Tool & Methodology
- Yield
- CoO、Cost

Position of the line edges

Pitch splitting

Spacer

2008 Lithography Technology Requirements

ORTC			37 /	75		201:	3	$\overline{\boldsymbol{\lambda}}$		
INDEX	Table LITH3a&b Lithography Technology R	equirements–	–Ivear-term	rears		22				
INDEX	Year of Production	2007	2008	2009	2016	32 NM		2013	2014	2015
IS	DRAM % pitch (nm) (contacted)	<u>68</u>	<u>59</u>	<u>52</u>	<u>45</u>	40	<u>36</u>	<u>32</u>	<u>28</u>	<u>25</u>
	DRAM									
IS	DRAM % pitch (nm)	68	59		3.3	nm 🏒 🗌	36	32	28	25
IS	CD control (3 sigma) (nm) [B]	7.1	6.2		<u>c 6 1</u>	nm	0.7	- 3.3	2.9	2.6
IS	Contact in resist (nm)	75	65		5 0.4	····· <	39	35	31	28
IS	Contact after etch (nm)	68	59	52	45	40		32	28	25
IS	Overlay [A] (3 sigma) (nm)	13.6	11.9	10.3	9.0	8.0	7.1	6.4	5.7	5.1
	Flash									
IS	Flash ½ pitch (nm) (un-contacted poly)	54	45	40	36	32	28		DU 2. :	
IS	CD control (3 sigma) (nm) [B]	5.6	4.7	4.2	3.7	3.3	2.9		8	
IS	Contact in resist (nm)	59	49	44	39	35	31			
IS	Contact after etch (nm)	54	45	40	36	32	28		. 3s 2.	3 nm
IS	Overlay [A] (3 sigma) (nm)	17.7		~	\succ	~		8.3	1.4	6.6
	MPU									
IS	MPU/ASIC Metal 1 (M1) ½ pitch (nm)		PICCI	spiittii	ng	Drococc	mofon	wa Sina	le mefe	25
WAS	MPU gate in resist (nm)					Process	waler	vs. Sing	gie wale	<mark>17</mark>
IS	MPU gate in resist (nm)							25	22	20
WAS	MPU physical gate length (nm) *	<u>Ove</u>	<u>erlay (</u>	<u>Shallel</u>	<u>nge !!</u>		14	13	11	10
IS	MPU physical gate length (nm) *						20	18	17	15.3
IS	Gate CD control (3 sigma) (nm) [B] **	3.5	3.0		2.5	2.3	2.1	1.9	1.7	1.6
IS	Contact in resist (nm)	84	73	64	56	50	44	39	35	31
IS	Contact after etch (nm)	77	67	58	51	45	40	36	32	28
IS	Overlay [A] (3 sigma) (nm)	17	15	13	11	10.0	8.9	8.0	7.1	6.3
	Chip size (mm ²)			, i i						
	Maximum exposure field height (mm)	26	26	26	26	26	26	26	26	26
	Maximum exposure field length (mm)	33	33	33	33	33	33	33	33	33

2008 Update Mask Requirements (DE/DP)

Optical Mask Requirements	2007	2010	2013	
[nm]	65	45	32	
Image Placement (Single Exposure)	8.2	5.4	3.8	1 node
Image Placement (Double Exposure) (Indep	5.8	3.8	2.7	
Image Placement (DE) (Lines Dependent)	2.4	1.0	1.1	4 nodes
Mean to Target (MTT)	5.5	3.6	2.5	
Difference in CD MTT for DE	2.7	1.8	1.3	2 nodes
CD Uniformity (nm, 3 Sigma) Isolated Lines	3.3	1.8	1.4	
CD Uniformity (nm, 3 Sigma) Dense Lines	5.2	3.4	24	
DE - Dual Line Mask CD (nm, 3 Sigma)	2.4	1.6	1.1	2 nodes

Note these are issues with LELE, LFLE Not the Spacer Technology

Soliting & Restricted Design

3D metrology

think it. apply it."

"22nm Half-Pitch Patterning by CVD Spacer Self Alignment Double Patterning (SADP)", Christopher Bencher, Proc. of SPIE Vol. 6924, 69244E, (2008)

"Robust Method for Promotion of Adhesion of Resist to Dielectric ARC", Martin Seamons, International Immersion Lithography Symposium22-25 September, 2008

Source: "Meeting Double Patterning Challenges: from split to process control", Vincent Wiaux, et. al. (IMEC), NGL2007 Workshop

Results – 32 nm (20,000 wafers/mask)

EUVL

k1=HP * NA/λ

		DRAM Half-Pitch									
方式	NA	2007	2010	2013	2016	2019					
		65nm	45nm	32 / SE 32 / DP	22 / SE 22 / DP	16 / SE 16 / DP					
	0.92	0.31	0.21	0.15 0.31	0.10 0.21	0.08 0.15					
102i.wa	1	0.34	0.23	0.17 0.33	0.11 0.23	0.08 0.17					
1331-Wa	1.07	0.36	0.25	0.18 0.35	0.12 0.24	0.09 0.18					
	1.2	0.40	0.28	0.20 0.40	0.14 0.27	0.10 0.20					
	1.3	0.44	0.30	0.22).43	0.15 0.30	0.11 0.22					
	1.35	0.45	0.31	0.22 0.45	0.15 0.31	0.11 0.22					
	1.45	0.4	0.34	0. 4 0.48	0.17 0.33	0.12 0.24					
	1.5		0.35	0.25 0.50	0.17 0.34	0.12 0.25					
	1.6	J.54	v .37	0.27 0.53	0.18 0.36	0.13 0.27					
	1.7	0.57	0.40	0.28 0.56	0.19 0.39	0.14 0.28					
	0.25	1.20	0.83	0.59	0.41	0.30					
	0.3	1.44	1.00	0.71	0.49	0.36					
LUV	0.35	1.69	1.17	0.83	0.57	0.41					
	0.4	1.93	1.33	0.95	0.65	0.47					

高NA-EUV、RETにより16nm-hpも視野に!

Electrical Inspection SRAM Test Areas

usion

"A Practical Approach to EUV Reticle Inspection", Anna Tchikoulaeva, et. al.;

2008 International Symposium on Extreme Ultraviolet Lithography

17 Sept 28-Oct 1, 2008 International Symposium on Extreme Ultraviolet Lithography

The future is fusion

DRAM cell pattern

EUVL shows superior patterning performance

"Full-field Patterning Test with ADT for 30-nm node Device Application", Doohoon Goo*, Insung Kim, Joo-On Park, Jeonghoon Lee, Changmin Park, Jinhong Park, Jeong-Ho Yeo, Sungwoon Choi, Woosung Han; 2008 International Symposium on Extreme Ultraviolet Lithography

EUV Focus Areas 2003-2008

2003	2004	2005	2006	2007	2008
1. Source power and lifetime including condenser optics lifetime	1. Availability of defect free mask	1. Resist resolution, sensitivity & LER met simultaneously	1. Reliable high power source & collector module	1. Reliable high power source & collector module	1. Long-term source operation with 100 W at IF and 5MJ/day
2. Availability of defect free mas	k 2. Lifetime of source components & collector optics	2. Collector lifetime	2. Resist resolution, sensitivity & LER met simultaneously	2. Resist resolution, sensitivity & LER met simultaneously	2. Defect free masks through lifecycle & inspection/review infrastructure
3. Reticle protection during storage handling and use	3. Resist resolution, sensitivity & LER met simultaneously	3. Availability of defect free mask	3. Availability of defect free mask	3. Availability of defect free mask	3. Resist resolution, sensitivity & LER met simultaneously
 Projection and illuminator optics lifetime 	 Reticle protection during storage, handling and use 	4. Source power	 Reticle protection during storage, handling and use 	 Reticle protection during storage, handling and use 	 Reticle protection during storage, handling and use
5. Resist resolution, sensitivity and LER	 Source power 	 Reticle protection during storage, handling and use 	5. Projection and illuminator optics quality & lifetime	5. Projection and illuminator optics quality & lifetime	 Projection / illuminator optics and mask lifetime
6. Optics quality for 32-nm half- pitch node	 Projection and illuminator optics lifetime 	 Projection and illuminator optics quality & lifetime 			

EUVL Symposium 2008 (9/28-10/2)

	Now	2010	2010	2012	2012	2012	2013	2013
Maker	Nikon	ASML	Nikon	ASML	Nikon	ASML	Canon	ASML
Tool	EUV1	PPT	EUV2	HVM1	EUV3	HVM2	HVM	HVM3
NA	0.25	0.25	0.25	0.3	>0.3	0.32 (offaxis)	>0.3	0.4
Flare	10%		7%		5%		5%	
Overlay	10nm	4nm	5nm	3nm	<3nm		<3nm (SMO)	
Resolution	32nm	27nm	22nm	22nm	16nm	16nm	LS <25nm, IL 17nm, CH <28nm	11nm
Throughput wph power resist shots/w	5–10 wph (10W IF, 5mJ/cm2) 76 shots	>60wph (100W IF, 10mJ∕ cm2)	20 wph (50W IF, 10mJ/cm2) 76 shots	150 wph (200W IF, 10mJ/cm2)	100 wph (115W IF, 5mJ/cm2 180W IF, 10mJ/cm2) 76 shots	150 wph (200W IF, 10mJ/cm2)	55 wph (100W IF, 10mJ∕ cm2)	150 wph (400W IF, 15mJ∕ cm2)
Field Size Magnification		26x33mm2 x1/4	Pilot I	ine 2010	~2012			
					F	IVM 2012	2/2013~	

Preferred Technology by Year

2008 SEMATECH Litho Forum survey results

Includes Double Patterning

+ Includes EUVL extension in 2016

Looking at 16nm Half Pitch

Alternative Lithography Technologies

2008 SEMATECH Litho Forum survey results

Technologies that should be pursued more aggressively to achieve ITRS goals

ML2 (Mask Less Lithography)

CEA-LETI

-EU- FP7

MAGIC

E-beam, Photo, Ion-beam

Figure 1: Principles of Projection Mask-Less Patterning (PMLP) and PMLP Proof-of-Concept Tool, realized as part of the European integrated project CHARPAN (Charged Particle Nanotech).

PML2 PMLP/IMS Nanofabrication

Multibeam Systems

ZPAL/LumArray

OML/Micronic, ASML

21 KLA-Tencor reflected e-beam lithography (REBL) system.

REBL/KLA-Tencor

DARPA

DIVA

Marching of the microlithography horses: Electron, ion, and photon: Past, present, and future Burn J. LinProc. of SPIE Vol. 6520 652002-1

E-beam ML2 Throughput

Cluster

ML2

Multibeam Systems Inc. [MBI]/ 米 + TEL	Multi- Column, 50kV	・EBDW、マスク描画 ・>15wph (Via EBDW) ・2009年にデモ機完成 ・2013年 88コラム、10wph	 ・固定矩形に近い(3rd Order Imaging)、倍率可変、ベクター ・>1000A/cm2、50nA、Plasmaクリーニング ・2011年、10本カラム、0.2wph ・VSBのASIC用・マスク用、ポイントビームのマスク用も検討
KLA- Tencor (REBL) /米	Massive- Parallel, 50kV	・EBDW、マスク描画 ・2~40wph (層による) ・2013年にβ機	・反射型電子マスク(>1Mピクセル) ・回転ステージ ・DARPA (\$100M+\$100Mのマッチングファンド) '12年Proj.完了
Mapper Lithograp hy (Mapper)/ 蘭	Massive- Parallel, 5kV	・EBDW ・10wph ・13k本ビーム ・2010年にα機	 ・ポイントビーム ・POL(110本) で40nm描画(静止)(但し1umフィールド、 0.2nA/Beam(仕様1nA)) ・2009年、TSMC、LETIにプロト機(POL) ・ECのFP7の1つのプログラム(MAGIC)に参加(2008~2010)
IMS Nano- fabrication (PML2)/墺	Massive- Parallel, 50kV	・EBDW (マスクはlon) ・10wph ・>10M本ビーム ・2010年にα機	・ポイントビーム ・2千本ビームで描画成功(静止)、16nm解像 ・ECのFP7の1つのプログラム(MAGIC)に参加(2008~2010)
アドバンテ スト (MCC)/日	Multi- Column, 50kV	・マスク描画、EBDW ・>5wph (EBDW、16カラム 、20Gshot/wafer) ・2010年にβ(?)機	・VSB/CPビーム ・700CPアパーチャ ・ASET Mask D2I Projectでマスク描画用4カラムPOC機開発中

Nanoimprint

Imprinted Structures in Resist Main Pattern Corner features are well defined Excellent LER 4.0kV X50.000 X20.00 **Examples from transition regions** Feature fidelity is maintained in

X50,000 100nm WD 7.6mm X35.000 100nm WD 7.6mm M IMPRINTS 4.0kV

the transition regions

"Full field imprinting of sub-40 nm patterns", Jeongho Yeo, Hoyeon Kim, Ben Eynon, Samsung Electronics Co., Ltd, Proc. of SPIE Vol. 6921, 692107, (2008)

SEI

4.0kV

DSA (Directed Self Assembly)

Fig. 2. (A to D) SEM images of developed e-beam resist with Ls = 39, 78, 27, and 54 nm, respectively. (E to H) SEM images of the block copolymer film on top of the prepattern defined by the corresponding e-beam pattern above. The lattice pitch on the block copolymer samples is Lp = 39, 39, 27, and 27 nm, respectively. (I to L) Dot size distribution of e-beam (dark teal) and guided block copolymer patterns (light green).

D. S. Kercher, T. R. Albrecht, J. J. de Pablo, P. F. Nealey, Science 936 vol. 321 (2008)

2009版に向けて

■ EUVLの見極め

- 光源
- マスク
- 露光装置
- 欠陥、ペリクルレス
- コスト
- More Moore
 - 16nm以細のリソグラフィ技術、NGL
 - **450mm**
- More than Moore

 リソグラフィへの要求 ⇔ デバイス

まとめ

■ 32 nmは、DPで。

- 特に先行するFlashには、EUVLは、間に合わない。
- DRAM、LogicにはEUVLが適用される可能性がある
- DPは、コストが課題
 - データ分割処理
 - ・プロセス
 - ・マスク
 - 露光装置

22 nmの本命はEUVL

✓ 光源、無欠陥マスク、レジスト、など課題は依然山積

16 nm以細は混沌