WG12: Emerging Research Devices (ERD) 新探究デバイス - Beyond CMOS候補の位置付けと研究動向-

平本俊郎 東京大学生産技術研究所

- 1. 日本のERD-WGの位置付け
- 2. ERDのスコープと目的
- 3. 2009年版の概要: ロジック, メモリ
- 4. ロジック・メモリデバイスの評価
- 5. カーボンベースナノエレクトロニクス
- 6. まとめ

BISFET	Bilayer PseudoSpin Field-Effect Transistor
CNT	Carbon Nanotube
ERD	Emerging Research Device
ERM	Emerging Research Material
FET	Field Effect Transistor
GNR	Graphene Nano Ribbon
INC	International Nanotechnology Conference
IPWGN	International Planning WG for Nanoelectronics
MRAM	Magnetic RAM
NEMS	Nano Electro Mechanical Systems
NW	Nano Wire
PCM	Phase Change Memory
QCA	Quantum Cellular Automata
SET	Single Electron Transistor
STT	Spin Torque Transfer

ERD-WGの位置付け

WG12構成メンバー

リーダー:	平本俊郎(東大)									
サブリーダー	内田 建(東工大)									
幹事:	木下敦寛(東芝)									
企業:	佐藤信太郎(富士通)川端清司(ルネサス)								
	小瀧 浩(シャープ)	林 重徳(パナソニック)								
	白根 昌之(NEC)	屋上公二郎(ソニー)								
特別委員:	高木信一(東大)	和田恭雄(東洋大)								
	秋永広幸(産総研)	浅井哲也(北大)								
	日高睦夫(ISTEC)	伊藤公平(慶應大)								
	長谷川剛(NIMS)	 1)川端清司(ルネサス) 林 重徳(パナソニック) 屋上公二郎(ソニー) 和田恭雄(東洋大) 浅井哲也(北大) 伊藤公平(慶應大) 菅原 聡(東工大) -ンド(NICT) 河村誠一郎(JST) 								
	ペパー フェルディナ	内田 建(東工大) 下敦寛(東芝) <u> </u>								
	藤原 聡(NTT)	河村誠一郎(JST)								
	粟野祐二(慶應大学)								

Emerging Information Processing Concepts

Work in Progress - Do not publish

2005年版ERDのスコープ

求められる機能

- 要求される特性:
 - スケーラビリティ
 - 性能
 - エネルギー効率
 - 利得
 - 信頼性
 - 室温動作
- 望まれる特性:
 - CMOSプロセスとの互換性
 - CMOSアーキテクチャとの
 互換性

- 1. 新材料導入, 異種デバイス集積化等によるCMOSプラット フォームの延長.
- 2. 原理の全く異なるデバイスによる情報処理技術の変革.

最近の動き

- 1. 2005年版では新原理デバイス(Beyond CMOS)が主流.
- 2. 日本の主張により2007年版からCMOSとの融合を強調.
- 3. 2009年版でさらにその流れが強まる.
- 4. 2008年7月にBeyond CMOSの絞り込みの議論.
- 5. 2010年4月にはメモリの絞り込みの議論を行う予定.

STRD

9

2007 ITRS ERD

CMOS Scaling & Replacement Devices (1st)

Device							
	FET	CMOS Extension 低次元構造	CMOS CMOS Extension Extension 低次元構造 III-V チャ ネル		分子	強磁性ロジ ック	スピントラ ンジスタ
	Ref.	CMOS E	ctension		Bey	ond CM	DS
Types	Si CMOS	•CNT FET •NW FET •NW hetero- structures •Nanoribbon transistors	•III-V compound semiconductor channel replacement	SET	•2-terminal •3-terminal FET •3-terminal bipolar transistor •NEMS •Molecular QCA	•Moving domain wall •Hybrid Hall effect •Magnetic Resistive Element •M: QCA	 Spin Gain transistor HMF Spin MOSFET Spin Torque Transistor
Supported Architectures	Conventional	Conventional	Conventional	Threshold logic	Memory- based QCA	Lithographical ly defined	conventional

2007 ITRS Winter Public Conference, 5 December 2007, Makuhari Messe, Chiba, Japan Work in Progress - Do not publish *STRJ WS: March 5, 2010, WG12 ERD*

2007 ITRS ERD CMOS Supplement Devices (2nd Table)

Device	共鳴トン	マルチフ	単電子	分子デバイ	強磁性デバ	スピンデバ
	ネルダイ	ェロイック	トラン	ス	イス	イス
	オード	トンネル	ジスタ			
		接合				
State variable	Charge	Dielectric and magnetic domain polarization	Charge	Molecular Conformation	Ferromagnet ic polarization	Precession frequency
Response function	Negative differential resistance	Four resistive states	Coulomb blockade	Hysteritic	Non-linear	Nonlinear

2007 ITRS Winter Public Conference, 5 December 2007, Makuhari Messe, Chiba, JapanWork in Progress - Do not publishSTRJ WS: March 5, 2010, WG12 ERD

10

- Titles for the three Emerging Research Logic Tables
- Table 1: MOSFETS: Extending the channel to the End of the Roadmap
- Table 2: Charge based Beyond CMOS: Non-Conventional FETs and other Charge-based information carrier devices

Table 3: Alternative Information Processing Devices

Devi	ice		[A]							
Typical example devices		FET [A]	CNT FET	Graphene Nanoribbo n FET	Nanowire	III-V FETs	Ge FETs	Unconventio nal geometries FinFET		
Cell Size	Projected	100 nm	100 nm [D]	100 nm [I]	30 nm [??]	15 nm	15nm	100 nm [C]		
(spanar prich) [B]	Demonstrated	590 nm	~1.5 0m [E]	1.5μ[J]	~1 µ [M]	40nm [GE] ?	26nm [GA] ?	300 nm[T]		
Density	Projected	1.00E+10	4.50E+09	4.50E+09	1E11 [???]	1.00E+11	1.00E+11	1E10 [C]		
(device/cm ²)	Demonstrated	2.80E+08	4.00E+07	4.00E+07	1E8 [????]	1.5E10 [GF]	3E10[GB]	4.7E9[U]		
	Projected	12 THz	6.3 THz [F]	???	6.5 THz [Q] [N]]	N/A	N/A	12 THz[C]		
Switch Speed	Demonstrated	1.5 THz	4GHz [G]	26 GHz[K]	250 GHz [O]	2THz [GG]	290GHz [GC]	> 200 GHz[V]		
	Projected	61 GHz	61 GHz [C]	61 GHz [C]	100 GHz [P]	N/A	N/A	61GHz [C]		
Circuit Speed	Demonstrated	5.6 GHz	220 Hz [H]	22 kHz[L]	11.7 MHz [Q]]	N/A	N/A	8 GHz[W]		
Switching	Projected	3.00E-18	3.00E-18	3.00E-18	4E-20J [R]	N/A	N/A	3E-18 [C]		
Energy, J	Demonstrated	1.00E-16	1E-11 [H]	??????	6.0 E-16J [S]]	N/A	4.0E-15 [GD]	N/A		
Throughput,	Projected	238	238	61	1.00E-04	N/A	N/A	238 [C]		
GBit/ns/cm ²	Demonstrated	1.6	1.00E-08	Data not available	1.20E-04	N/A	N/A	N/A		
Operational Temperature		RT	RT	RT	RT	RT	RT	RT		
			CNT,		Si, Ge, III-V, II-VI,					
Materials	System	Si		Graphene	In ₂ O ₃ , ZnO, TiO ₂ , SiC	InGaAs, InAs, InSb	InGaAs, InAs, InSb	Ge		
Research Activit	y [AD]		171	???	447					

Logic: Table 2 (Charge-Based)

Dev	vice	FET [A]				Spin Transistor		Martin Contraction
Typical exan	mple devices	Si CMOS	Tunnel FET	I-MOS	Negative Cg FET	Spin FET	Single Electron Transistor	MEM S
bCell Size (spatial pitch) [B]	Projected	100 nm	All-silicon tunnel Strained Ge or III-V Heterostructure	100 nm	100 nm[same as CMOS]	100 nm for spin MOSFET	40 nm[L]	100 nm W3
	Demonstrated	590 nm	Projected: 20nm [U1] Demonstrated: 70	2000 n m	N/A	~1∟m(cnanne) bnoth) for Spin FET[ST3]	~200 nm[H,I]	900 nm
Density	Projected	1.00E+10	Not known: cnamer engin	1.00E+10	1E10[same as CMOS]	~1E10 IOT SPILI MOSFEI	6.00E+10	1.00E+10
(<i>aevice/cm</i>)	Demonstrated	2.80E+08	~1E10	2.50E+07	N/A	Not investigated	~2E9	1 /cm**2
Switch Speed	Projected	12 THz	Not known	> 1 THz	1 THZ [based on 1 nm movement of dipoles with a	~10 THz or less for spin MOSFEI	10 THz [M]	1 GHz W4
Switch Speeu	Demonstrated	1.5 THz	SI/OC/IIIAS funnaling source: IUHZ I'I HZ/SI HZ	not known	N/A	30GHz for Spin FET[ST3]	2 THz [N]	0.18 GHz W5
Circuit Speed	Projected	61 GHz	Not known	61 GHz	~10GHz (based on 1THz switch speed	~10GHz or less	1 GHz [L]	1 GHz
Circuit Speen	Demons trated	5.6 GHz	Not known: wiii aepena on me	not known	N/A	Not investigated	1 M Hz [F]	.18 GHz
Switching Energy	Projected	3.00E-18	Not known	3.00E-16	1.00E-19	1E-17-1E-18 101 spin MOSPEI [ST4]	$1 \times 10^{-18} \text{ [L]}$ [>1.5×10 ⁻¹⁷] ^[O]	5E -17 J W 6,W7
J	Demonstrated	1.00E-16	51/0e/IIIAS funneling course: 90/90/3000E-18 J/um at VDD=0.5V, L=20nm [111]	not known	N/A	Not investigated	8×10 ^{-17 [P]} [>1.3×10 ⁻¹⁴] ^[O]	
CDit/us/sus?	Projected	238	Not known	not known	Not known	~200	10	10

Work in Progress - Do not publish

Logic: Table 3 (Alternatives)

	Collective spin devices	Moving Domain wall	Atomic switch	Molecular	Pseudospi ntronc	Nano magnetic	
State Variable	Spin	Polarization, magnetization	metal cations / atoms	Molecular configuration	Charge distribution symmetry in two lavers	Magneric polarization pattems	
Response Function	Sinusoidal, various	Non linear	Non-linear	Nonlinear, NDR	Gate controlled NDR	Non linear	
Class—Example	Spin Wave Mach Zender	Ferromagnetic wire devices	Programable logic	Combinatorial logic circuits	Bilayer Pseudospin Field Effent Transistor	MQCA majority gate	
Architecture	Morphic	Morphic	Morphic, cross bar	Morphic	Morphic	Morphic	
Application	Signal Processing	Low power, reconfigurable logic	Non volitale logic	Combinatorial logic circuits	General purpose logic	General purpose logic	
Comments			Low resistance, low power		Extremely low power	Low power, high density	
Status	Demonstrated	Simu lated	Demonstrated	Simulated	Simulated, theory	Demonstrated	
Material Issues	High propagation loss, slow propagation velocity	High permeability material required			Low defect bilayer graphene, contacts		

Memory

		Capaciatnce- based			Resis	stance-based			
		Ferroelectric FET memory	Nanomechan ical Memory	Spin Torque Ttransfer Memory	Nanothermal Memory	Nanothermal Nanoionic Memory Memory		Macromol ecular Memory	Molecular Memories
Storage Mechanism		Remnant polarization on a ferroelectric gate dielectric	Electrostatically -controlled mechanical switch	Magnetization of the ferromagnetic layer	T hermo- chemical redox process, 2) Thremal phase	Ion transport and redox reaction	Multiple mechanisms	Mult iple mechanisms	Multiple mechanisms
Cell Eler	nents	1T	1T1R or 1D1R	1T 1 R	R 1T1R or 1D1R 1T1R or 1D1R		1T1R or 1D1R	1T1R or 1D1R	1T1R or 1D1R
Device Types		FET with FE gate insulator	 nanobridge/ cantilever telescoping CNT Nanoparticle 	Magnetization change by spin transfer torque	 Fuse/Antifuse Memory nanowire PCM 	 cation migration anion migration 	 Charge trapping Mott transition FE barrier effects 	M-I-M (nc)- I-M	Bi-st able switch
	Min. required	<65 nm	<65 nm	<65 nm	<65 nm	<65 nm	<65 nm	<65 nm	<65 nm
Feature	Best projected	22 nm [A1]	5-10 nm [B1]	7-10 nm	5-10 nm	5-10 nm	5-10 nm	5-10 nm	5 nm [H1]
size F	Demonstrated	~2 m [A2]	180 nm [B2]	50 nm [C1]	180 nm [D1]	90 nm [E1]	1 m [F1]	250 nm [G1]	30 nm [H2]

- 1. Computational State Variable(s) other than Solely Electron Charge
- 2. Non-thermal Equilibrium Systems
- 3. Novel Energy Transfer Interactions
- 4. Nanoscale Thermal Management
- 5. Sub-lithographic Manufacturing Process
- 6. Alternative Architectures

Critical Assessment (評価)

	1 Scalability	Performance ²	Energy ³ Efficiency	4 Gain	Operational ⁵ Reliability	Operational ⁶ Temperature	CMOS 7 Technological Compatibility	CMQS 8 Architectural Compatibility
Unconventional	2.4	2.4	2.3	2.1	2.1	2.5	2.3	2.6
(Gate-all-around 3 MOSFETs, etc.) 2	Ŧ	Ŧ	Ŧ	Ŧ	₹	₹	Ŧ	Ŧ
CNT MOSFETs	2.4	2.4	2.4	2.1	2.1	2.6	1.9	2.8
3 2 1	Ŧ	Ŧ	Ŧ	重	Ŧ	Ŧ	Ŧ	±
Nanowire MOSFETs	2.4	2.2	2.3	2.1	2.1	2.5	2.2	2.6
3 2 1	Ŧ	Ī	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ī
Ge MOSFETs	2.0	2.5	2.2	2.2	1.9	2.5	2.3	2.7
3 2 1	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ŧ	Ł

Carbon-Based Nanoelectronics

Table ERD8: Research and Technology Develop	oment Sch	edule pr	roposed	for Carb	on-bas e	d Nanoe	lectronic	s to impa	act the In	dustry's	Timetab	le for Sc	aling Info	ormation	Process	ing Tech
First Year of IC Production	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
CMOS Extension Devices																
CNT and Graphine Devices																
Controlled growth																
Chiraliy of CNTs																
Semiconducting vs metallic																
n/p Doping Control																
Diameter of CNTs																
Direction of CNTs																
Wall thickess - Single wall																
Graphene Epitaxy																
Edge Control of Graphene																
Bandgap Control of Graphene																
Ohmic contacts																
Hi-K Gate dielectric & gate metal	_															
Heterobandgap junction structures																
Beyond CMOS Devices																
CNT Devices																
NEMS																
Molecular Electronics																
Graphine Devices																
Veselago Electron Lens																
Pseudospintronics											Narr	row Op	tions			
Quantum Interference																
Quantum Hall Effect																
Bi-layer structures			-	-		-		_		-						
This legend indicates the time during which rese	arch, deve	lopment	t, and qu	alificati	on/pre-pi	roductio	n should	be takin	ng place:	for the so	o luti on.					
Research Required																
Development Underway																
Qualification / Pre-Production																
Continuous Improvement																

Work in Progress - Do not publish

まとめ

- CMOSの延長技術の研究が進展. 大きな期待が寄せられている.
- Beyond CMOSのみで情報処理を行うことは困難との考 え方がさらに広まる. Beyond CMOSがCMOSに融合す る考え方が一般化.
- 3. もっとも集中すべきBeyond CMOSとしてカーボンベース ナノエレクトロニクスのロードマップを作成.