

電界効果によるグラフェンの 電気伝導変調

鳥海 明

東京大学大学院工学系研究科 マテリアル工学専攻

toriumi@material.t.u-tokyo.ac.jp http://www.adam.t.u-tokyo.ac.jp/

@Lab.

Exciting Material, Graphene !

K. S. Novoselov et al. Science 306 (2004) 666. The pioneering work in Manchester Univ.

Outline

1. Graphene Introduction

2.Electric Field Effects in Graphene

3.Possible Applications

4. Summary and Future Outlook

Graphene

TEM on 90 nm-thick SiO₂ @Lab.

A. H. Castro Neto et al., Rev. Mod. Phys. 81(2009)109.

E - k Dispersion and Density of States

Unique E-k dispersion and density of states.

Advanced Peeling Technique !

Optical Contrast of Graphene on SiO₂/Si

A monolayer graphene on ~90 nm SiO₂ is also visible by optical microscope.

Conventional FET and Graphene FET

Graphite to Graphene on SiO₂

K. Nagashio et al., JJAP 49 (2010).

Monolayer graphene is something special.

VLSI Tech Short Course

Graphene on Nothing and on BN

Suspended

On BN

a)

1.7% lattice mismatch

K. I. Bolotin et al., SSC 146 (2008) 351.

Mobility Limited by Interfacing Substrate

Possible Scattering Mechanisms

@Lab.

J-H Chen et al., Nature Nano. 3 (2008) 206.

Graphene / SiO₂ Interaction

@Lab.

The flake size depends on SiO₂ surface treatment.

20110304

Contact Angles on Differently Treated SiO₂

Effects of SiO₂ Surface on Raman G-band

M. S. Dresselhaus et al., Nano Lett. 10(2010)751

K. Nagashio et al., IEDM (2010).

A strong interaction between graphene and SiO₂.

F. Schwierz, Nature Nanotech. May 2010.

Mobility is degraded as E_G is opened.

Bi-layer Graphene

J. B. Oostinga et al., Nature Materials 7 (2008) 151.

Bi-layer graphene with double gates can open the gap!

Intrinsic Challenges (2) - contact resistance -

$$R_{total} = R_{ch} + 2R_{contact}$$
$$R_{contact} = \frac{1}{2} \left(R_{total} - \rho_{channel} \frac{L}{W} \right)$$

K. Nagashio et al., IEDM (2009).

Contact area dependence of contact resistance.

20110304

Current Crowding

Current crowding should be considered in large contacts.

Specific Contact Resistance

Cross-bridge Kelvin

$$R_{c} = \frac{V}{I} = \frac{\rho_{c\Box}}{dW}$$

Etched by O₂ plasma

contact resistivity

$$p_{c\Box} = ~ 5 \times 10^{-6} \Omega cm^2$$

Transfer length

$$d_{T} = \sqrt{\frac{\rho_{C\square}}{R_{sh}}} = ~1 \mu m$$

K. Nagashio et al., APL. 97(2010) 143514.

DOS Bottleneck

A small number of seats available in the channel.

Intrinsic Challenges (3) - quantum capacitance -

Z. Chen and J. Appenzeller, IEDM (2008)

Sub-nm CET is intrinsically difficult.

Output Characteristics

Intrinsically no pinch-off due to no band-gap.

RF-Performance

Y. M. Lin et al. Science 327(2010)662.

F. Schwierz, Nature Nanotech. May 2010.

 f_{τ} is comparable to existing RF devices.

Other Applications

C. Chen, et al., Nature Nanotech. 4 (2009)861.

F. Schedin, et al., Nature Mater. 6 (2007)652.

Wafer Scale to Roll-to-Roll

SKKU + Samsung

Y. Lee et al., Nano Lett. 10 (2010) 490.

S. Bae et al, Nature Nanotech. 5 (2010)574.

Far Beyond Conventional FETs

BiSFET - Bilayer Pseudo Spin Field-Effect Transistor -

H. Min et al., Phys. Rev. B78 (2007)121401.

el-hole condensation through thin insulator.

Ultra-low Power Switching !

Summary

✓ Graphene is a really exciting material for both physicists and engineers.

Monolayer graphene shows very high mobility for both electron and hole.

✓ High frequency application seems more promising than digital one.

No band-gap and small DOS effects such as quantum capacitance and large contact resistance should be seriously concerned.

The graphene research is just booming up, and I believe it will shows different faces in a couple of years.

✓ Be optimistic about new materials for the present.