

1

2011年度STRJ Workshop

STRJ-WG4(配線)活動報告 ~微細化の深耕とTSV実用化への展望~

2012年3月2日 WG4主査・松本 明 ルネサスエレクトロニクス(株)

1. はじめに

- > 主な略語について
- > STRJ-WG4 構成メンバー
- > 2011年度活動内容概要

2.2011年度活動内容

- 2.1. ITRS2011改訂トピックス
- 章構成の見直し
- ➢ M1微細化ロードマップにFlashを追加
- ➤ Low-kロードマップの見直し
- ≻ 信頼性:J_{max}の緩和
- Metallization P.S.のアップデート
- 2.2. STRJ-WG4独自活動
- ➤ 配線抵抗率のサイズ効果(継続)
- ➢ TSVプロセス技術課題調査

3.2011年度活動まとめと今後の活動予定

Work in Progress - Do not publish

1. はじめに

- ▶ 主な略語について
- > STRJ-WG4 構成メンバー
- > 2011年度活動内容概要

2. 2011年度活動内容

- 2.1. ITRS2011改訂トピックス
- > 章構成の見直し
- > M1微細化ロードマップにFlashを追加
- Low-kロードマップの見直し
- ≻ 信頼性:J_{max}の緩和
- Metallization P.S.のアップデート
- 2.2. STRJ-WG4独自活動
- 配線抵抗率のサイズ効果(継続)
- > TSVプロセス技術課題調査

3.2011年度活動まとめと今後の活動予定

Work in Progress - Do not publish

主な略語について

AR	Aspect Ratio
BM	Barrier Metal
CNT	Carbon Nano-Tube
DB	Dielectric Barrier
EM	Electro-migration
EMR	EM Resistance
J	Current Density
J _{max}	Maximum Current
J _{EM}	J Limited by EM Lifetime
k	Dielectric Constant
Low-k	low Dielectric Constant
PMD	Pre-Metal Dielectric
LER	Line Edge Roughness
TSV	Through-Silicon Via
OSAT	Outsourced Semiconducto

アスペクト比:(深さ または 高さ)/(幅 または 径) 拡散防止金属膜 カーボンナノチューブ 拡散防止絶縁膜 エレクトロマイグレーション エレクトロマイグレーション耐性 電流密度 最大電流密度 EM寿命保証可能な最大電流密度 比誘電率 低誘電率 第1配線層下(コンタクト部の)層間絶縁膜 配線側壁形状の粗さ シリコン貫通ビア r Assembly and Test 半導体組立検査受託会社

Work in Progress - Do not publish

STRJ-WG4 2011年度構成メンバー

リーダー	松本 明	[ルネサスエレクトロニクス]
サブリーダー	中村 友二	[富士通セミコンダクター]
国際対応	山﨑 治	[シャープ]
	小林 伸好	[日本ASM]
幹事·特別委員	筑根 敦弘	[大陽日酸]
委員	柴田 英毅	[東芝]
	磯林 厚伸	[東芝]
	高橋 新吾	[ソニー]
	中尾 雄一	[ローム]
	青井 信雄	[パナソニック]
	伴 功二	[ルネサスエレクトロニクス]
特別委員	上野 和良	[芝浦工大]
	早川 崇	[SEAJ:東京エレクトロン]
	嘉田 守宏	[ASET]
	今井 正芳	[SEAJ:荏原製作所]
	辻村 学	[荏原製作所]
	伊藤 浩之	[東京工業大学]

Work in Progress - Do not publish

- ロITRS2011改訂に関する日本担当としての活動、及び 海外担当分のフォローアップを主導した。
- ロ下記は日本側から提案し2011年版に反映した
 - ・M1のロードマップに、微細化を牽引するFlashを追加
 - ・Low-kロードマップ見直し
 - 信頼性の章でJ_{max}を緩和
 - •Metallization P.S.のアップデート
- 口日本独自活動として以下を行った
 - ・抵抗率の細線効果の影響と、代替技術の調査継続
 - TSVの要素技術におけるDifficult Challengesの調査

Work in Progress - Do not publish

報告内容

1. はじめに

- > 主な略語について
- > STRJ-WG4 構成メンバー
- > 2011年度活動内容概要

2.2011年度活動内容

- 2.1. ITRS2011改訂トピックス
- 章構成の見直し
- ➢ M1微細化ロードマップにFlashを追加
- ➢ Low-kロードマップの見直し
- ≻ 信頼性:J_{max}の緩和
- Metallization P.S.のアップデート

2.2. STRJ-WG4独自活動

- ▶ 配線抵抗率のサイズ効果(継続)
- > TSVプロセス技術課題調査

3.2011年度活動まとめと今後の活動予定

Work in Progress - Do not publish

章構成の見直し

海外担当分のフォローアップに当たり、 音構成な敕理 章/節の整合性を高めた

Interconnect Arc	hitectures		
	a. 3	D Interconnect Architectures	
	b.Pa	issives	
Interconnect Ch	allenges a	nd Requirements	
	a. D)ifficult Challenges	
	b, T	echnology Requirements	

別の章となっていた

Interconnect Architectures -3D. Passives -Interconnect Challenges and Requirements -2DのD/C, T/R (Architectureの記載あり)

を同一の章

Introduction & Executive Summary

の中で扱い、主題である2Dを前に配置

Work in Progress - Do not publish

ヨノーン、	早開成で正生					
Scope						
Introduction & Exe	ecutive summary					
	a. Difficult Challenges					
	b. Iterconnect architecture					
	c.3D					
	d.Passives					
	e. More Moore vs. More than Moore					
Reliability and Per	formance					
	a.reliability					
	b.Performance					
Process modules						
	a.Introduction					
	b. <u>Dielectric</u>					
	c.Barrier					
	d.Nucleation layers					
	e.Conductor					
	f.etch/strip/clean incl. surface prep					
	g.planarization					
	h.Bond pad / global contacts					
	i.TSV					
	j.Passives					
Emerging intercon	nects					
	a.Optical					
	b.CNT					
	c.Graphene					
	d.Spin					
	e.RF					
	f					
Cross-cut stuff						

FlashメモリにおけるAir-Gap技術動向(昨年度報告)

K.Prall et al., (Micron & Intel), "25nm 64Gb MLC NAND Technology and Scaling Challenges", Tech. Dig. of IEDM2010(Invited Paper), pp.102-105(2010).

2013年(Flash ½ pitch Poly:2Xnm)以降、Flashメモリにおけるセル間干渉低減を 狙ったWord Line間及びBit Line間へのAir-Gap導入が本格化する可能性。 2011年は、Flashメモリ向け配線技術のロードマップ策定に取り組んだ。

Work in Progress - Do not publish

M1微細化ロードマップにFlashを追加

LogicとFlashのM1ピッチの乖離が拡大 ⇒デバイス毎の課題と対策を見直す契機とする

Work in Progress - Do not publish

STRJ WS: March 2, 2 NAND flash device has the most aggressive scaling trend at least the 1022

Year of Production

2014 2016 2018 2020 2022

2010 2012

Flashデバイス配線の技術要求

Items in the table

- Flash half pitch (nm)
- DRAM half pitch (nm)
- MPU/ASIC half pitch (nm)
- Numbers of metal layers
- Metal 1 wiring ½ pitch (nm)
- Interlevel metal 1 insulators max. effective dielectric constants
- Interlevel metal 1 insulators min. effective dielectric constants
- Metal 1 A/R
- Conductor effective resistivity ($\mu \Omega$ cm) for Cu
- Specific via resistance (Ω cm²)
- Contact A/R
- Specific contact resistance (Ω cm²)

Flash配線のTechnology Requirement Tableを追加

Work in Progress - Do not publish

Low-kロードマップの見直し

- ■絶縁膜構造は3つから2つに削減(無機/有機ハイブリッド構造を削除)
 - -28nm以降上記構造の採用計画は見られない
 - -材料メーカーからの材料供給の保証がない
- ■低誘電率化への積極性が減じる傾向を反映

-ULK材料へのプラズマ起因のダメージにより信頼性保証が困難

	Year of Production	2011 2012 2013		2014	2015	2016	2017	2018		
IS	DRAM ¹ / ₂ Pitch (nm) (contacted)	36	32	28	25	23	20.0	17.9	15.9	
IS	MPU/ASIC Metal 1 ¹ / ₂ Pitch (nm)(contacted)	38	32	27	24	21	18.9	16.9	15.0	
WAS	Interlevel metal insulator – effective	2.6-2.9	2.6-2.9	2.4-2.8	2.4-2.8	2.4-2.8	2.1-2.5	2.1-2.5	2.1-2.5	
IS	dielectric constant (κ)	2.8-3.2	2.8-3.2	2.5-3.0	2.5-3.0	2.5-3.0	2.1-2.8	2.1-2.8	2.1-2.8	
WAS	Interlevel metal insulator – bulk	2.3-2.6	2.3-2.6	2.1-2.4	2.1-2.4	2.1-2.4	1.9-2.2	1.9-2.2	1.9-2.2	
IS	dielectric constant (κ)	2.5-2.7	2.5-2.7	2.3-2.6	2.3-2.6	2.3-2.6	2.2-2.5	2.2-2.5	2.2-2.5	
WAS	Copper diffusion barrier and etch	3.5-4.0	3.5-4.0	3.0-3.5	3.0-3.5	3.0-3.5	2.6-3.0	2.6-3.0	2.6-3.0	
IS	stop – bulk dielectric constant (κ)	3.5-4.0	3.5-4.0	3.0-3.5	3.0-3.5	3.0-3.5	2.6-3.0	2.6-3.0	2.6-3.0	
	Year of Production	2019	2020	202	2021 20		3 2024	2025	2026	
IS	DRAM ¹ / ₂ Pitch (nm) (contacted)	14.2	12.6	11.3	3 10.	0 8.9	8.0	7.1	6.3	
IS	MPU/ASIC Metal 1 ¹ / ₂ Pitch (nm)(contacted)	13.4	11.9	10.6	9 .9	5 8.4	7.5	6.7	6.0	
WAS	Interlevel metal insulator – effective	2.0-2.3	2.0-2.3	3 2.0-2	.3 1.7-2	2.0 1.7-2	0 1.7-2.0		-	
IS	dielectric constant (κ)	2.1-2.4	2.1-2.4	2.1-2.	4 1.8-2		2.2 1.8-2.2	1.6-2.2	1.6-2.2	
WAS	Interlevel metal insulator – bulk	1.7-2.0	1.7-2.0) 1.7-2	.0 1.5-	1.8 1.5-1	.8 1.5-1.8			
IS	dielectric constant (κ)	2.0-2.4	2.0-2.4	4 2.0-2	.4 1.8-2	2.2 1.8-2	.2 1.8-2.2	1.8-2.2	1.8-2.2	
WAS	Copper diffusion barrier and etch	2.4-2.6	2.4-2.6	5 2.4-2	.6 2.1-2	2.4 2.1-2	2.4 2.1-2.4			
IS	stop – bulk dielectric constant (κ)	2.4-2.6	2.4-2.6	3 2.4-2	.6 2.1-2	2.4 2.1-2	2.4 2.1-2.4	2.1-2.4	2.1-2.4	
	UIN 111 I LUYLESS - 170 HOL DHDHS				$\mathbf{v}_{\mathbf{i}}$	\angle . $\angle UIZ$.	WUH INTE	i connect.		

ITRS2011 Low-kロードマップアップデート

ITRS Low-kロードマップの変遷

2007以来の見直し

Work in Progress - Do not publish

J_{max} はクロック周波数の低減により緩和
 J_{EM} (J limited by EM) はEM耐性向上技術(CuAl合金、CoWPキャップ等)
 により改善されたと考えられる

work in Progress - Do not publish

Metallization Potential Solutions (変更点)

		First Year of IC Production	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
		Metal 0/Contact plug																
		Ti/TiN, WN, barriers for CVD W																
		TaN/Ta, Ta, Ti, Stacked Ru barriers							<u> </u>	L .		<u></u>						
击空· 亦 百 笛	न जर्म	Note 1.1 Intermediate wiring				_ C	;0W	۲ X	タル	++	マツフ	7を、	重	産段	階に	二发!	更	
が丁・久父国	1771	ionized PVD TaN/Ta Ta				j	選択	CVD)メタ	ルを	F追加	加						
		TaN TIN TI WNC (CVD ALD)		1		1	1						1	1 1				
	Barriers	Solf formed /restored horriero, MrSiO				1							1	1 1	I			
		MnTaO etc																
		Capping																
		E-less CoWP											1	1 1	F			
	$\land \land$	Selective CVD metal (Co, Ru, W)				1												
	\land	Semi-Global/Global																
		TaN, TiN, (ionized PVD)					-											
		Metal 0/Contact plug																
	$\land \land \land$	CVD W reduced by B2H6				1		Cu	プラ	ヮグの	Dラ ・	イナ	—、	シー	-ドを	追力	П	
		E-less or plated Cu seed											1					
	Nucleation	ALD/CVD Ru, Co for Cu plug								_								
	Seed	Metal 1, Intermediate wiring								CuS	ノー	ドの	被覆	夏性 [句上	.膜		
	Liner	Enhanced PVD Cu								Cus		ドの	みー	チロ	时	を追	hΠ	
		E-less or plated Cu seed															/JH	
		CVD(ALD)-Co, Ru for Cu-wettability				1												
		CVD or ALD Cu seed																
		Motal O/Contact plug			_													
		CVD W											1					
		ECD Cu. Rh		1									1					
		Barrier less conductor																
		Metal 1. Intermediate wiring																
		ECD Cu																
		Allov additions to Cu for reliability		·,		0	1	•	••	· · · · · ·					1			
Conduct	Conductor	improvements (CuAl, CuMn, CuTi)																
		PVD Cu reflow																
		Alternative materials with weaker size						-						h=1.1.1				
		effect (W, Mo, Ru)				_ ð	りつる	č Uu	に督	るわ	る配	禄金	日禹	候補	I を1	鱼加		l .
		Semi-Global/Global																
		ECD Cu				n	1	1					r	1 1				
TT 7 I •	Deres	PVD(reflow) or CVD AI				0777	<u></u>	UC		<u> </u>		<u>101</u>			/ T			
														- / - //		TO10		a 0 0+

Work in Progress - Do not publish

STRJ WS: March 2, 2012, WG4 Interconnects

16

報告内容

1. はじめに

- > 主な略語について
- > STRJ-WG4 構成メンバー
- > 2011年度活動内容概要

2. 2011年度活動内容

- 2.1. ITRS2011改訂トピックス
- > 章構成の見直し
- > M1微細化ロードマップにFlashを追加
- Low-kロードマップの見直し
- ≻ 信頼性:J_{max}の緩和
- Metallization P.S.のアップデート

2.2. STRJ-WG4独自活動

- 配線抵抗率のサイズ効果(継続)
- ➢ TSVプロセス技術課題調査

3.2011年度活動まとめと今後の活動予定

Work in Progress - Do not publish

Cu配線抵抗率のサイズ効果(昨年度報告)

 $\rho = \rho_0 \{ (1/3)/(1/3 - \alpha/2 + \alpha^2 - \alpha^3 \ln(1+1/\alpha)) \}^{W. Steinhogl et al, JAP, 97, 023706 (2005)} + 3/8C(1-p)[(1+AR)/AR](\lambda/W) \} with \alpha = (\lambda/d)(r/1-r), AR=T/W$

·Cu配線抵抗率のサイズ効果:2005年以降、多くのモデルが提案された ·抵抗率上昇の正確な予測と、対策の検討が必要

Work in Progress - Do not publish

抵抗の平均自由行程、グレイン粒径依存性など

スケーリングに伴なう抵抗率の増加

 配線寸法がCuの平均自由行程(39nm) を下回る

AMC 2010

- ・バリア/シード層の占有比拡大
- •LERの配線幅に占める割合の増加
- ・グレインサイズの縮小
- EM、SM耐性向上のためのアロイ(合金化)

Model: Mayadas/Shatzkes combined with Fuchs/Sondheimer using the Mattiessan rule (Physical Review B 81, 155454 (2010)) $\rho_{\text{bulk}} = 1.7 \ \mu\Omega$ -cm, Aspect Ratio = 2, R = 0.43 and P = 0.52

> STRJ WS: March 2, 2012, WG4 Interconnects 19

Work in Progress - Do not publish

Cu代替金属配線の検討状況

サイズ効果による抵抗率上昇・・・電子の平均自由行程に依存

 λ Cu: 39nm > λ W, Mo, Ru ~10nm

平均自由行程が短い材料⇔バルク材料が高抵抗率

Work in Progress - Do not publish

Cu配線低効率の細線効果調査のまとめ

- ■1-2世代先でのCuダマシン配線の抵抗はデバイス動作が危ぶまれる値になること が示唆される
- ■微細配線では配線形状の最適化など新たな施策が必要

微細配線においてCuより低抵抗になる可能性のある代替金属候補

<材料物性>

- (1) 平均自由行程の短い金属
- (2) グレイン粒径の大きい金属
- (3) ダマシン・埋め込みプロセスでは無く、ベタ膜・RIEプロセスにより形成 できる金属

(4) バルク抵抗の低い金属

〈インテグレーション〉

(5) プロセス起因による抵抗上昇を抑制できる金属

■微細化の限界は抵抗スペックの観点で適用可能性を考慮すると、バリスティック 伝導を有するカーボン膜などの代替材料を検討すべき時代となっている

Work in Progress - Do not publish

来年度の活動に向けて 新探求配線技術のまとめ

材料	潜在的利点	実用化に向けての懸念事項
Cu以外の金属(W, Ag,シリサイド)	微細構造での 低抵抗の可能性	粒界拡散, インテグレーション, 信頼性。
ナノワイヤ(Native)	細線での バリスティック伝導	量子接触抵抗,配向性,低密度, 基板との相互作用。
CNT <i>(Native)</i>	細線でのバリスティック 伝導とEM耐性	量子接触抵抗,配向性制御, 低密度,ばらつき。
グラフェンナノリボン (GNR)	極薄膜上でのバリスティック 伝導と平面成長	エッジ制御,成膜,積層, 基板との相互作用。
光配線(チップ間)	2012年度以降の調	査対象 ^{ニップパッケージ間の接続,} 配列,光電変換。
光配線(チップ内)	配線長の長い領域, WDMの 高帯域での遅延と電力低減	配線長の長い場合の優位性,小型化, インテグレーション,WDMが必要。
トポロジカル絶縁体 <i>(Native)</i>	局所弾性散乱, 局在化スピン輸送。	非弾性の後方散乱制御, 単一層での使用。
ワイヤレス	現状の技術への適用	非常に限られた帯域。ダイ内部通信, 広範囲かつ電力の負担
超伝導体	ゼロ抵抗配線, 高Q値受動素子	極低音冷却,周波数依存耐性, 欠陥,低臨界電流密度

Work in Progress - Do not publish

TSV形成プロセスと困難な課題(昨年度報告)

プロセス温度制限:バリア絶縁膜の低温成膜に起因するプロセス課題検討

Work in Progress - Do not publish

低温で成膜したバリア絶縁膜の膜質低下

低温成膜したバリア絶縁膜

- · 膜密度が低下
- Cu拡散速度が増加
- MIS構造のリーク電流が増加

H. Kitada JJAP 2011

Work in Progress - Do not publish

TSVリーク電流:側壁の平坦性依存

25

報告内容

1. はじめに

- > 主な略語について
- > STRJ-WG4 構成メンバー
- > 2011年度活動内容概要

2. 2011年度活動内容

- 2.1. ITRS2011改訂トピックス
- > 章構成の見直し
- ▷ M1微細化ロードマップにFlashを追加
- Low-kロードマップの見直し
- > 信頼性:J_{max}の緩和
- Metallization P.S.のアップデート

2.2. STRJ-WG4独自活動

- 配線抵抗率のサイズ効果(継続)
- > TSVプロセス技術課題調査

3.2011年度活動まとめと今後の活動予定

Work in Progress - Do not publish

2011年度活動のまとめと2012年度計画

- ・2011年度の主な活動
 - ITRS2011改訂に関して以下を日本主導で行った
 - ・章構成の見直し
 - ・M1微細化ロードマップにFlashを追加
 - •Low-kロードマップの見直し
 - ・信頼性:J_{max}の緩和
 - •Metallization P.S.のアップデート
 - STRJ独自の活動として以下を行った
 - ・配線抵抗率の細線効果(継続)
 - •TSVプロセス技術課題調査
- ・来年度の活動予定
 - 金属材料の限界調査とナノカーボン材料実現技術への取り組み
 - TSVの要素技術マップ作成
 - ロジックとメモリの微細化Potential Solutions検討と整理

Work in Progress - Do not publish