

EUVは間に合うか、

それともトリプルパターンニングか? ー リソグラフィ技術の最新動向 ー

WG5 (リソグラフィ Working Group) 富士通セミコンダクター(株) 千々松 達夫

一内容一

- ◆WG5の活動体制
- ◆EUVか、トリプルパターニングか
- ◆その他のトピックス
- ◆まとめ

WG5(リソグラフィWG)の活動体制

一JEITA半導体部会/関連会社-

- ■千々松達夫/リーダー(富士通セミコンダウター)
- ■上澤史且/サブリーダー(ソニー)
- ■田村貴央(ルネサスエレクトロニクス)
- ■東川巌(東芝)
- ■和田恵治(ローム)
- ■山本次朗(日立製作所)
- ■笹子勝 (パナソニック)

ーコンソーシアムー

■須賀治(EIDEC)

-SEAJ 他-

- ■奥村正彦/国際委員(SEAJ:ニコン)
- ■高橋和弘(SEAJ:キヤノン)
- ■中島英男(SEAJ:TEL)
- ■山口哲男(SEAJ:ニューフレアテクノロジー)
- ■笠間邦彦(SEAJ:ウシオ電機)
- ■大久保靖(HOYA)
- ■林直也(大日本印刷)
- ■森本博明(凸版印刷)
- ■大森克実(東京応化工業)
- ■栗原啓志郎(アライアンスコア)

計18名

STRJ-WG5活動状況

- ◆ITRS 2012 update/ITRS 2013改訂に向けた取り組み
 - ●各テーブルの見直し
 - ●Potential Solutionsテーブルの見直し
 - ●新規DSA Tableへの対応を議論
- ◆NGL進捗確認 (学会発表等の最新状況を参加委員から報告)
 - ●EUVL開発状況
 - ・ 光源パワー、マスクインフラ、レジスト開発
 - → 光リソからEUVLへの移行時期の見極め
 - ●その他の露光技術(ML2, Imprint, DSA)の動向確認

NANDフラッシュ

Micro SDカード

現在、SDカードで128GB, μSDカードで64GBのものが販売されている。

2年弱で、半値に!

SD-MF032G [32GB] の 価格推移グラフ

いかに安く作るか?が重要

NANDで量産適用されている技術

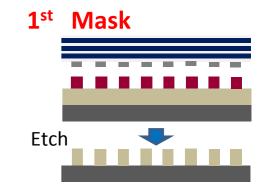
解像限界 =
$$0.25 \times \frac{\lambda}{NA}$$

$$= 0.25 \times \frac{0.193}{1.35}$$

 $= 0.036 (\mu m)$

リソのマージンを考慮すると、ArF液浸での解像限界は 38nm×ラインアンドスペース。

次のSlideのSelf Aligned Double Patterning(SADP)で、19nmラインアンドスペースまで、形成可能。


※ LOGIC デバイス(2Dランダム形状)では、45nmライン&スへ[®]ース前後か。 SMOやネガティブ現像技術で、もう少し頑張れるか? 先端突き合わせ部が困難。

SADPは19nmハーフピッチが限界

EUVL Flow $\lambda = 13.5$ nm NA = 0.32

EUVLが使えれば、 単純なリソ/エッチングエ 程で、製造できる。

19nm以下のパターンを液浸で形成するために STRD は、トリプルパターニングが必要

Flow EUVL Flow $\lambda = 13.5$ nm (Self Aligned Quadruple Patterning) NA = 0.5Mask レジスト 38nm L&S 1st Mask Depo Etch Etch Depo **Ftch** SADPを繰り返す事によって Etch 10nm hpまで可能だが工程 **3rd Cut Mask** 数が多い。 チップサイズ縮小による単 2nd Cut Mask 価削減に見合うかどうかが Etch Etch Key

STRJ WS: March 8, 2013, WG5 Litho

Work in Progress - Do not publish

8

EUVLの大きな課題

1. 光源の出力 計画通りに進んでいない

- 2. 無欠陥マスク
- ■EUV波長の検査機の登場はこれから
- 多層膜の欠陥が0にならない
- 3. レジストの解像力、感度、LER まだ、両立せず

EUV光源の状況

<u>露光機のスペック</u>

年	2011	2012	2013
	NXE:3100	NXE:3300B	NXE:3300C
スループット(wph)	60	125	150
光源ハ [°] ワー(W)	105	250	350
	プレ量産機	量産機	

光源パワーの現状

1時間に5~6枚

125wphを実現するには、 25台の露光装置が必要

● LPP, LDP光源とも、現状のパワーは10W程度(NXE:3100)

● LPP光源:Cymer = 40W、Gigaphoton=20W。

実験機レベル

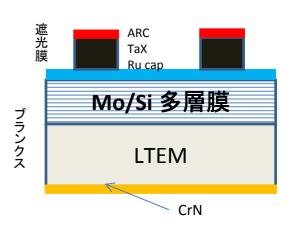
● LDP光源: Xtreme= 45W

LPP: Laser Produced Plasma

LDP: Laser assisted Discharge Plasma

一番の問題は、予定通りに向上しないこと。

EUVマスク開発状況


■ ブランクスにおいて、LTEM(ガラス基板)のPit欠陥は抑えられる。

しかし、<u>多層膜の欠陥を減らす事</u>ができていない。

現状では、欠陥の真上に遮光膜が来るようにして回避するしかない。

■ EUV波長の検査装置が登場するのは、今年(2013年)。

新たな欠陥(種)が見えてくる可能性も有り。

EUVマスクの断面構造

EUV Mask欠陥検査装置開発状況

量産対応装置のリリース時期

■ ブランクス欠陥検査(EUV)

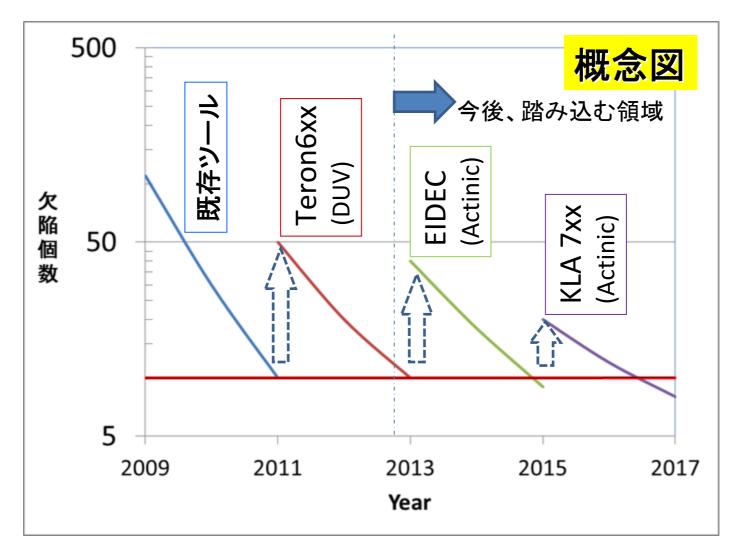
Lasertec / EIDEC: 2013 (16nmhp)

KLA : 2015 (11nmhp)

■ 転写性レビュー検査(EUV AIMS) (Aerial Image Measurement System)

Zeiss/Sematech: 3Q.2014(NA0.3)

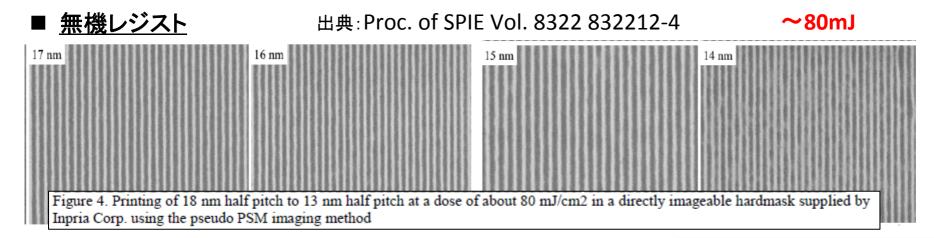
■ マスクパターン欠陥検査


(EB) Ebara/EIDEC : 2014(16nmhp)

HMI, AMAT

(EUV) KLA : 4Q.2015

▶ 現状は既存の欠陥装置(DUV光源)とウエーハ転写/検査で開発が進められている。


欠陥検査ツールが進化すると、見えていたいなかったものが見えてくる。

EUVレジスト開発状況

Figure 4. Ultimate resolution data of recent progress (NA0.3, Pseudo PSM)

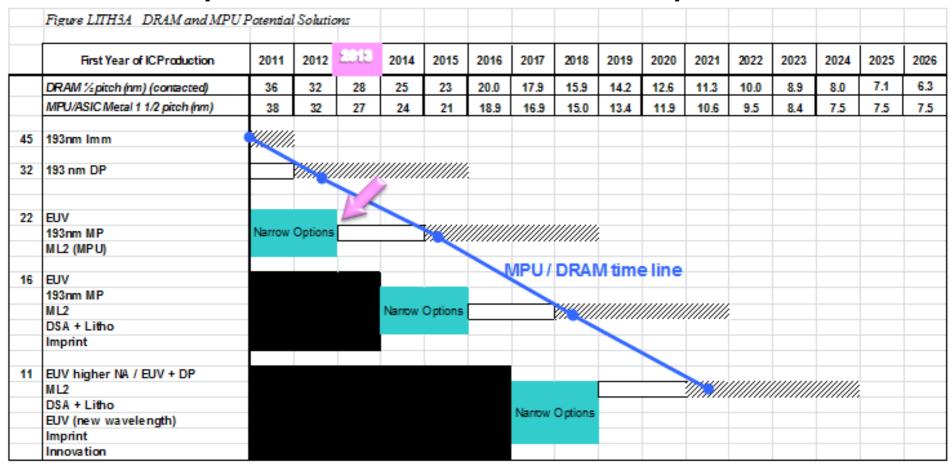
感度の悪い点が問題

Logicデバイス各社の微細化road map

		N	low						
	2011	2012	2013 201	4 2015	2016	2017	2018		
	22n	m: FINFE	T, M1=p 90 ni	n , M2,3=p	80nm 193	i single	pat.		
Intel			14nm: Fl	NFET(Bulk), M1= p6 4	lnm ?,	193i d	louble pat.	
				10	Dnm: <i>詳細</i>	???			
TCNAC			20nm: Plane	r, M1= p6	4nm ,193i	double	pat.		
TSMC			16nm: FINFET, BEOLは、20nmと同じ。M1= p64nm						
					10nm : 🖺	詳細??? ?	° М1= р	44nm ?? do	ouble?
Global			20nm: Plane	r, M1= p6	4nm ,193i (double	e pat.		
Found	Foundry 14nm: FINFET, BEOLは、20nmと同じ。M1= p6								
				1	0nm: <i>詳細</i> :	???M1	=p 44 r	nm ?? double	e?

最近の情報

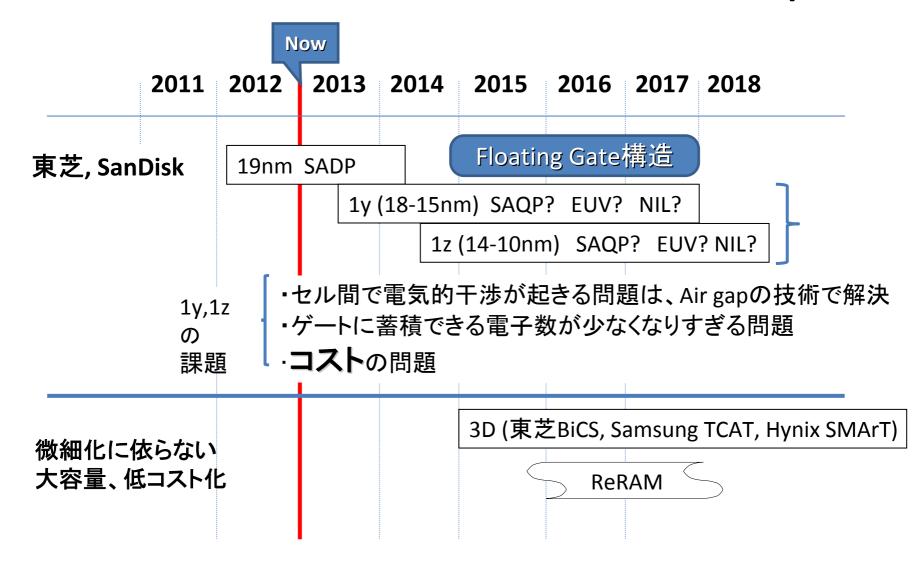
2013/2/5 Common Platform Technology Forum (IBM, Global Foundry, Samsung)


While everyone agrees <u>EUV</u> will be necessary sometime in the future, it is taking longer to develop and facing more issues than expected. Now it isn't likely to be used <u>until 7nm production</u> or even later.

M1 16nm hp???

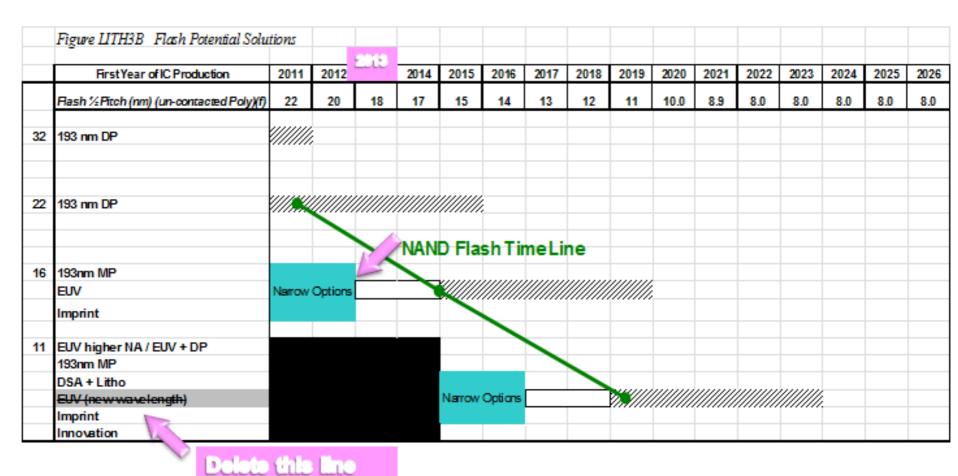
2017? 2018?

Updated MPU/DRAM Options



We will narrow options for 22nm hp in 2013.

NAND Flashの微細化road map

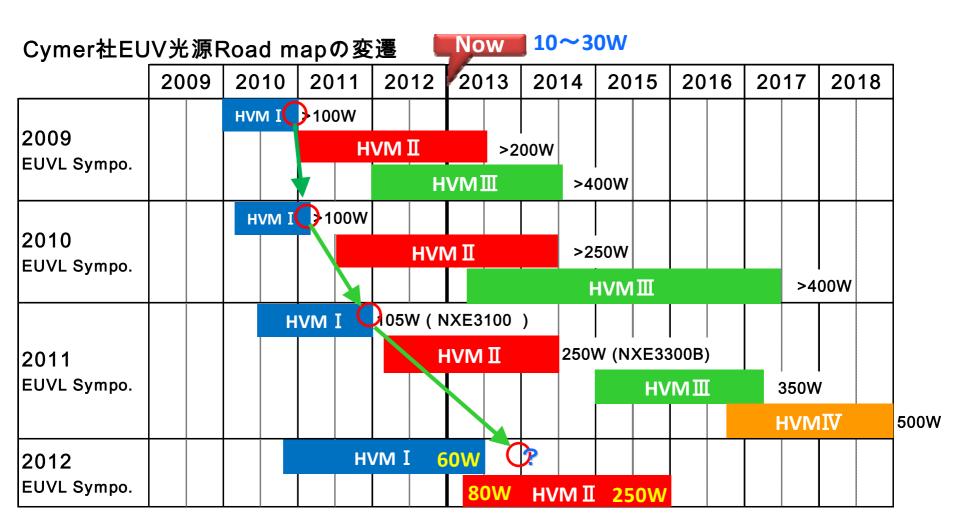


昨年の情報

2012/7/27 Korean IT news

"If ASML develops the equipment without delays and Samsung Electronics and SK Hynix adopt EUV equipment according to their schedule, the era of 10-nano memory semiconductors will begin next year. EUV equipment will be applied to NAND flash and is anticipated to be adopted for **DRAM** in the future," said a source of the industry. In order to use EUV lithography in actual production, it should be able to treat more than 60 wafers an hour. This is a challenge that ASML has to overcome in developing EUV lithography. NXE3100で105W出れば、使うぞというメッセージか。

Updated Flash Options



This table shows the requirements for 2-D flash development. The potential introduction of 3-D flash does not drive lithography.

Notes: from 2016 3dimensional solutions with lower resolution will have to be considered, which implies solutions from earlier nodes.

※100Wが出てくるはずのタイミングを○で示した。

EUVは間に合うか、

それともトリプルパターンニングか?

現時点のEUV光源出力、これまでの進捗から判断すると、
NANDフラッシュ **16nm**-hp, <u>DRAM Logic</u> **22nm**-hpに用いる
リソグラフィー技術は、ArF液浸。

NAND: SAQP トリプルパターニング

LOGIC: LELEダブルか、(Cutマスクを含む)トリプルか。

<u>懸念点</u>: 工程(マスク)数の増大に対して、コストへの影響。 レイアウト設計が複雑になること。これもコスト増の要因に なる。

EUVは、光源出力が上がれば、11nm-hp NAND, 16nm-hp DRAM, Logicへ適用か。

Work in Progress - Do not publish STRJ WS: March 8, 2013, WG5 Litho

122

その他のトピックス

さらなる微細化に向けて(1) EUV

必要

入射角度を大きくできない。MASK倍率と

Shotサイ	くズの	見直し	が
311017	/ / \//.	兀巴!	ノル

波長	13.5	nm /	NXE3	100	NXE	3300	Sho	tサイズ
	hp/NA	\bigvee	0.25	\	0.32	0.5	0.7	0.85
	32		0.59		0.76	1.19	1.66	2.01
	22		0.41		0.52	0.81	1.14	1.39
	[16		0.30		0.38	0.59	0.83	1.01
	11		0.20		0.26	0.41	0.57	0.69
	8		0.15		0.19	0.30	/ 0.41	0.50
	6		0.11		0.14	0.22	, 0.31	0.38

波長

短波長化

6.7 nm

hp/NA		0.25	0.35	0.45	0.65	0.85
	22	0.82	1.15	<u>/</u> 1.48	2.13	2.79
	16	0.60	0.84	/ 1.07	1.55	2.03
	11	0.41	0.57	0.74	1.07	1.40
	8	0.30	0.42	0.54	0.78	1.01
	6	0.22	0.31	0.40	0.58	0.76
	4	0.15	0.21	0.27	0.39	0.51
	3	0.11	0.16	0.20	0.29	0.38

'19 NAND 11nmには、 間に合わ ないだろう。

Opportunity

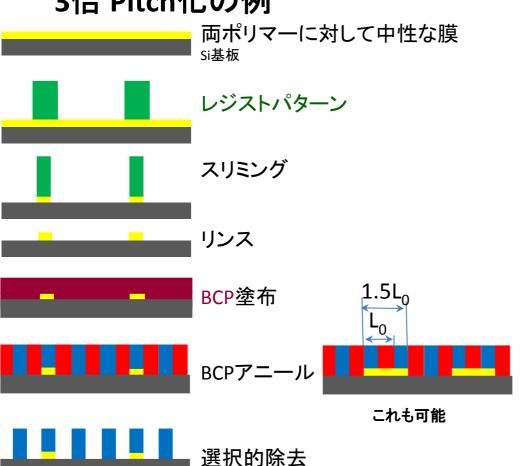

さらなる微細化に向けて(2) DSA

<u>Directed-Self-Assembly Lithography</u>

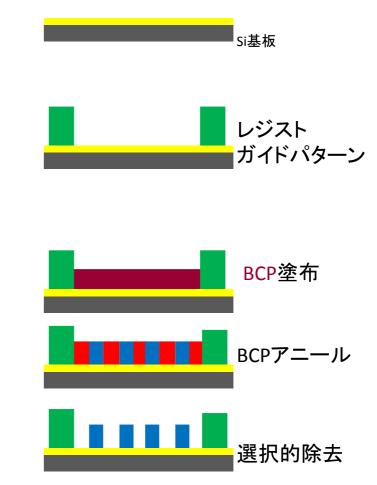
PS-PMMA(χ =0.04)では、pitch 12nm-hpが可能。 PS-PDMS (χ =0.26)では、pitch 9nm-hpが可能。

χ:相互作用のパラメータ

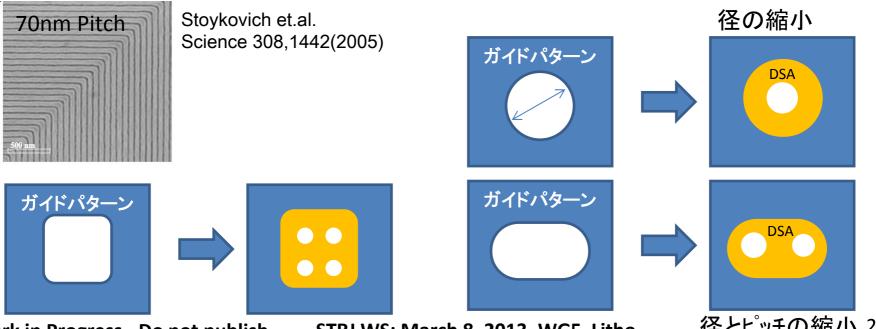
Pitch 100nmのレジストパターン Pitch 25nm のDSAパターン(PS-PMMA)



出典: J. Micro/Nanolith. MEMS MOEMS 11(3), 031302 (July-Sept 2012)


DSA(Directed-Self-Assembly)リソ プロセスフロー

■ <u>ケモエピタキシー法</u> 3倍 Pitch化の例

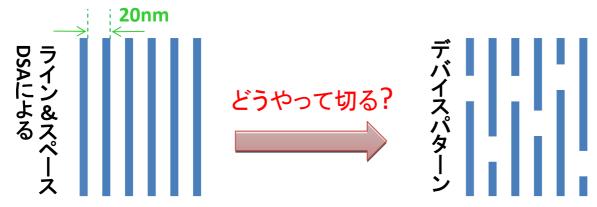

■ <u>グラフォエピタキシー法</u>

DSA(Directed-Self-Assembly)リソ 応用例

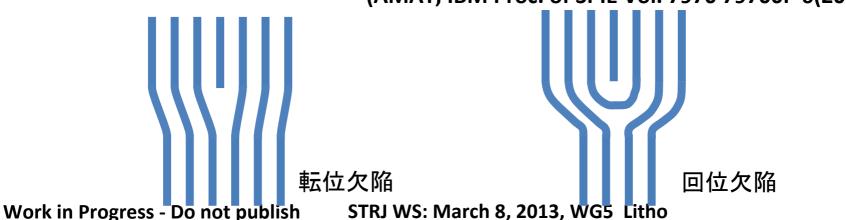
- ケモエピタキシー法は、ラインパターンの3~6倍ピッチ化への応用が期待できる。
 - 密なL字パターンは、di-block copolymerに、各ホモPolymerをブレンドすれば形成できる。(下の写真)
 - その他の形状も、いろいろと検討されている。
- グラフォエピタキシー法は、ホール調整(rectification:縮小等)への応用が期待できる。
 - 多少、ガイドパターンの径がばらついていても、ばらつきの小さいDSA径が出来る可能性あり。

L字パターンの例

Work in Progress - Do not publish


STRJ WS: March 8, 2013, WG5 Litho

径とピッチの縮小 27


DSAリソの課題

- ■大きな課題は、
 - DSA固有欠陥のないこと (転位、回位欠陥)
 - 設計ルール (特に、ライン系の倍Pitch化への適用時)

■ 12nm hp L&S での欠陥評価として、(多めに見積もって) < 26個/cm² という報告があり。

(AMAT, IBM Proc. of SPIE Vol. 7970 79700F-6(2011)

DSA Table for 2013 ITRS (案)

Table LITH3C DSA Capability										
Year of Production	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
DRAM ½ pitch (nm) (contacted) values from row 4, LITH2					22.5	20.0	17.9	16	14	13
Flash ½ pitch (nm) (un-contacted poly), values from row 13, LITH2					15.5	14.2	13.0	12	11	10
LITH2					21.2	18.9	16.9	15	13	12
MPU gate in resist length (nm) values from row 21, LITH2					22.2	19.8	17.7	16	14	12
Defects in patterned resist films, gates, contacts, etc. (#/cm2), values from line 17, Table Lith3A					0.01	0.01	0.01	0.01	0.01	0.01
Patterning layer thickness (nm)								4		
Resist meets requirements minimum feature CD control (nm. 3 sigma) values from Lith3A, line 10					1.7	1.6	1.5	1.3	1.2	1.1
CD uniformity (nm, 3 sigma), contact/vias [G] values from table Lith4, line25					1.5	1.5	1.5	1.5	1.5	1.5
Registration (nm,3 sigma)**										
Minimum defect size in patterned DSA (nm)										
Low frequency line width roughness*: (nm, 3 sigma) values from LITH3A, line 19					1.8	1.6	1.4	1.3	1.1	1.0
Backside particle density (particles/cm²) values from LITH3A, line 13					0.28	0.28	0.28	0.28	0.28	0.28
Back surface particle diameter: lithography and measurement tools (nm) Values from LITH3A, line 14					75	50	50	50	50	50
Defects in spin-coated resist films (#cm²) † values from LITH3A, line IS					0.01	0.01	0.01	0.01	0.01	0.01
Minimum defect size in spin-coated resist films (nm) values from LITH3A. line 16					10	10	10	10	10	10

				2274						
Year of Production	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
DRAM/ MPU/ ASIC (M1) ½ pitch (nm)	36	20	28	0.5	23	-00	40	40	44	42
(contacted)	30	32	20	<u>25</u>	23	<u>20</u>	<u>18</u>	<u>16</u>	14	<u>13</u>
DRAM CD control (3 sigma) (nm)	3.7	3.3	2.9	2.6	2.3	2.1	1.9	1.7	1.5	1.3
Flash ½ pitch (nm) (un-contacted poly)	22	20	<u>18</u>	<u>17</u>	<u>15</u>	14	<u>13</u>	<u>12</u>	<u>11</u>	<u>10</u>
MPU/ASIC Metal 1 (M1) ½ Pitch	38	32	27	24	2.7	19	17	15	13	12
(nm)(contacted)	30	32	27	24	21	19	1/	13	13	12
Gate CD control (etched) (3 sigma) (nm)	2.5	2.3	2.1	1.9	1.7	1.6	1.5	1.3	1.2	1.1
Overlay (3 sigma) (nm)	7.6	6.4	5.4	4.8	4.2	3.8	3.4	3.0	2.7	2.4

LSIへの適用検 討が始まった ばかり。 2018年頃か?

This section shows guide feature size based on	target CD	and pitch	<u>multiplica</u>	tion factor							
DSA Based Density Multiplication for Dense Art	rays (Driv	en by NAN	D)								
Target CD (flash)	22	20	<u>18</u>	<u>17</u>	<u>15</u>	14	<u>13</u>	12	<u>11</u>	<u>10</u>	I
Target Pitch (ArF Immersion)				134.8	123.7	113.4	104.0	95.4	87.4	80.2	
Guide feature CD (chemoepitaxy) 1.5L 0				50.6	46.4	42.5	39.0	35.8	32.8	30.1	I
Guide feature CD (chemoepitaxy) 0.5L 0				16.9	15.5	14.2	13.0	11.9	10.9	10.0	Ī
Pitch Multiplication Factor [E]				4X	4X	4X	4X	4X	4X	4X	I

ホール形成へ の適用が最初 か。

	This section shows guide feature requirements					
	Guide Pattern CD Control (nm, 3 sigma)					
	LWR of Guide Pattern (nm, 3 sigma)					
	Defects in guide pattern (#/cm²)					
14/	Minimum defect size in guide-pattern (nm)					
VV						

450mm化の対応

Table LITH2 Lithography Technology Requi	rements								
Year of Production	2012	2013	2014	2015	2016	2017	2018	2019	2020
DRAM ½ pitch (nm) (contacted)	<u>32</u>	<u>28</u>	<u>25</u>	<u>23</u>	20.0	<u>17.9</u>	<u>15.9</u>	14.2	12.6
Flash ½ pitch (nm) (un-contacted poly)	20	18	17	15	14.2	13.0	11.9	10.9	10.0
MDU(ASICMetal I (MI) 1/ pitch (mn)	22	27	24	24	12.0	16.0	15.0	-124 -	1449
Wafer size (diameter, mm)	300	300	450	450	450	450	450	450	450

オランダ会議で、赤に修正した。

July.9 ASML 共同投資プログラムを発表(450mm対応装置、EUVL)

July.9 Intel 社、ASML社に総額\$4.1Bの投資(研究開発費、株式投資)

(7割が450mm化向け)

- Aug.6 TSMC社、ASML社に総額\$1.36Bの投資
- Aug.8 Intel社、ニコンに¥数百億の開発費提供

Aug.27 Samsung社、ASML社に総額\$0.95月24投資+\$6.4B(5,100億円)の資金

Work in Progress - Do not publish

STRJ WS: March 8, 2013, WG5 Litho

加速資金を得た結果のスケジュール

2012-14年は、空白状態。

Global 450 Consortium(G450C)は、昨年にNano Imprintの装置を導入して開発を進めている。NikonはArF露光機を17年に出荷予定。

まとめ

- EUVL量産使用開始は、2015年。ただし、光源パワーが 目標値に近づかないとCost-effectiveにならない。
- DPTが量産適用されている。EUVL導入までに、MPTまで 延命適用される可能性が高い。 Cost-effectiveに出来るかどうかが鍵。
- 450mm化対応に向けて、露光機メーカにデバイスメーカーから開発資金が投入された。量産機のリリースは2017年から。
- STRJ-WG5として、今後もITRSロードマップ策定に貢献していく。

AIMS	Aerial Image Measurement System
AMC	Airborne Molecular Contamination
ARC	Anti-Reflection Coating
BARC	Bottom ARC
TARC	Top ARC
CAR	Chemical Amplified Resist
CD	Critical Dimension
CDU	CD Uniformity
DE	Double Exposure
DFM	Design for Manufacturing/
	Design for Manufacturability
DP/MP	Double Patterning / Multiple Patterning
DPP	Discharged Produces Plasma
DSA	Directed-Self-Assembly
DOF	Depth of Focus
EBDW	Electron Beam Direct Writer
EDA	Electronic Design Automation
EPL	Electron Projection Lithography
ESD	Electro Static Discharge
EUVL	Extreme Ultraviolet Lithography
IPL	Ion Projection Lithography
LDP	Laser assisted Discharge Plasma
LER	Line Edge Roughness
LPP	Laser Produced Plasma
LTEM	Low Thermal Expansion Material

LWR	Line Width Roughness
MEEF	Mask Error Enhancement Factor (=MEF)
ML2	Maskless Lithography
NA	Numerical Aperture
NGL	Next Generation Lithography
NIL	NanoImprint Lithography
NTD	Negative Tone Development
OAI	Off-Axis Illumination
OPC	Optical Proximity Corrections
RBOPO	C Rule Base OPC
MBOP	C Model Base OPC
PSM	Phase Shifting Mask
cPSM	complementary PSM
APSM	Alternating PSM
EPSM	Embedded PSM
Att. PS	SM Attenuated PSM
PXL	Proximity X-ray Lithography
RET	Resolution Enhancement Techniques
SADP	Self Aligned DP
SAQP	Self Aligned Quadruple Patterning
SB	Scattering Bar (same meaning as SRAF)
SRAF	Sub Resolution Assist Feature™
SFIL	Step & Flash Imprint Lithography
UV-NIL	Ultraviolet NIL