Moore's Law and the Economics of Leading Edge Semiconductors

Kenneth Flamm Technology and Public Policy Program Lyndon B. Johnson School of Public Affairs University of Texas at Austin kflamm@mail.utexas.edu

5

Why Do We Care?

- Now largest U.S. manufacturing industry Measured by value added
- One 4-digit manufacturing industry now almost 1% U.S. GDP
- Most important input to other manufacturing industries we care a lot about
 - Computers, communications
 - 40-60% of change in computer price
 - 15-30% of change in LAN hware price Aizcorbe, Flamm, Kurshid (2002)
- Big impact on GDP, productivity growth See Jorgenson AEA 2001 Presidential Address

Globalized Semi Industry Challenges Economic Analysis Completely international production system Different steps in process – Design, wafer fabrication, assembly, test- done at diverse locations · Product mix varies greatly across countries Example: US → 37%+ microprocessor IC share in 2002 vs. 20% globally Semi input mix varies greatly across user industries PPI's and appropriate input price indexes likely to diverge significantly · Little reliable/useful data collected by govt. Industry-collected data is at company level, region of sale, no info on production region

With Specialization Came New Coordination Issues

- Different pieces of increasingly complex technology now coming from proliferating numbers and types of vendors
- Only very largest leader firms attempted to coordinate next-gen tech internally
 - High cost
 - Accepted substantial spillovers to others
- "Moore's Law" the de facto benchmark
 - Competitive target for device, equip producers

		No of Years	Assumptions f Years All Values in Per een Nodes m c/y	nptions llues in	ns in Period 0 = 1		Components of t		Resulting
		Between Nodes			t	d.	A	р	
3-yr node, 3-yr Moore's Law		3		1	1	2	4	2	0.50
no ingenuity	differences of logs			0	0	0.69	1.39	0.69	-0.69
	CAGR/CADR					25.99%	58.74%	25.99%	-20.63%
3-yr node, 3-yr Moore's Law		3		1	1	2.86	4	1.4	0.35
historical DRAM ingenuity	differences of logs			0	0	1.05	1.39	0.34	-1.05
	CAGR/CADR					41.90%	58.74%	11.87%	-29.53%
2-yr node, 2-yr Moore's Law		2		1	1	2	4	2	0.50
no ingenuity	differences of logs			0	0	0.69	1.39	0.69	-0.69
	CAGR/CADR					41.42%	100.00%	41.42%	-29.29%
2-yr node, 2-yr Moore's Law		2		1	1	2.86	4	1.4	0.35
DRAM ingenuity over 2 yrs	differences of logs			0	0	1.05	1.39	0.34	-1.05
	CAGR/CADR					69.03%	100.00%	18.32%	-40.84%
2-yr node, 2-yr Moore's Law		2		1	1	4	4	1	0.25
constant die size	differences of logs			0	0	1.39	1.39	0.00	-1.39
	CAGR/CADR					100.00%	100.00%	0.00%	-50.00%
2-year node, 2-year Moore's Law		2		1	1	2.53	4	1.58	0.40
DRAM ingenuity over 3 years	differences of logs			0	0	0.93	1.39	0.46	-0.93
	CAGR/CADR					59.11%	100.00%	25.70%	-37.15%
2-vr node, 3-vr Moore's Law		2		1	1	2.51	2.51	1	0.40
constant die size	differences of logs			0	0	0.92	0.92	0.00	-0.92
	CAGR/CADR					58.43%	58,43%	0.00%	-36.88%
							,		
									25

ntei Des	sktop	Price .	Index			
	•					
	Intel Desktop Processor Price Annualized Growth Rates					
	Flamm (2004)	Aizcorbe, Corrado, Doms (2000)				
Period Feb. 1996-Feb. 1997	-52.66%	Q495-Q496	-55.23%			
Feb. 1997-Feb. 1998	-68.92%	Q496-Q497	-62.90%			
Feb. 1998-Jan. 1999	-68.43%	Q497-Q498	-69.20%			
Jan. 1999-Jan. 2000	-64.80%	Q498-Q499	-76.40%			
Jan. 2000-Jan. 2001	-69.23%					
Jan. 2001-Jan. 2002	-54.91%					
Jan. 2002-Jan. 2003	-53.86%					
lan 2003-May 2004	-59 15%					

